
December 4, 2014 1
http://legion.stanford.edu

Alex Aiken

Legion Overview

December 4, 2014 2
http://legion.stanford.edu

Logistics

 Wireless
  Choose “Stanford Visitor” network, follow directions
Bootcamp slides @ legion.stanford.edu

 Thursday

  Extending the schedule by 15 minutes
  Parking
  Lunch
  Dinner

 Friday
  Different building: Gates 505

December 4, 2014 3
http://legion.stanford.edu

Team

 Alex Aiken
 Mike Bauer (Nvidia)
Zhihao Jia
Wonchan Lee
 Elliott Slaughter
 Sean Treichler

 Charles Ferenbaugh
 Sam Gutierrez
 Pat McCormick

December 4, 2014 4
http://legion.stanford.edu

Legion

 A programming model for heterogeneous,
distributed machines

 Heterogeneous
  Mixed CPUs and GPUs

 Distributed
  Large spread, and variability, of communication latencies
  Caches, RAM, NUMA, network, …

December 4, 2014 5
http://legion.stanford.edu

One Slide History

 Started in 2011

 First version in 2012

 S3D implementation in 2013
  Collaboration with Jackie Chen’s group at Sandia
  Part of the ExaCT Center
  Drove many feature changes/additions
  And many optimizations/improvements

 Emphasis on scaling up in 2014
  S3D on 8,000 Titan nodes

December 4, 2014 6
http://legion.stanford.edu

Legion S3D Heptane Performance

 1.73X - 2.85X faster between 1024 and 8192 nodes

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Nodes

0

50000

100000

150000

200000

Th
ro

ug
hp

ut
Pe

rN
od

e
(P

oi
nt

s/
s)

Titan Legion 483

Titan Legion 643

Titan Legion 963

Keeneland Legion 483

Keeneland Legion 643

Keeneland Legion 963

Titan OpenACC 483

Titan OpenACC 643

December 4, 2014 7
http://legion.stanford.edu

Bootcamp Focus

 Writing Legion programs
  Different from the academic papers
  Cover many pragmatic, usability aspects

 This morning: The programming model

  Tasks, regions, mapping

 This afternoon: Everything else
  Structuring applications
  Debugging & profiling

 Tomorrow: Working with application groups

December 4, 2014 8
http://legion.stanford.edu

Philosophy

 Designed to be a real programming system

 Good abstractions, clear semantics

 But can also “open the hood”
  Ways to drop down to lower-levels of abstraction
  Within the programming model

December 4, 2014 9
http://legion.stanford.edu

Example Code

December 4, 2014 10
http://legion.stanford.edu

First Point

 Legion has a sequential semantics
  Easy to reason about
  But see discussion of advanced features this afternoon

 Not like
  MPI
OpenACC
  CUDA

December 4, 2014 11
http://legion.stanford.edu

Second Point

 A programming model
  embedded in C++
  but see discussion of future Legion compiler later today

December 4, 2014 12
http://legion.stanford.edu

Third Point

 A runtime system
  All decisions are made dynamically
  Again, see discussion of Legion compiler …

December 4, 2014 13
http://legion.stanford.edu

Tasks

 A task is
  The unit of parallel computation in Legion
  Takes regions (typed collections) as arguments
  Can launch subtasks

December 4, 2014 14
http://legion.stanford.edu

Task Tree

 Legion programs can launch arbitrary trees of tasks

 By default, execute in the order launched

 Runtime system automatically identifies parallel
tasks

T

T T T

T T T T

December 4, 2014 15
http://legion.stanford.edu

Regions: Index & Field Spaces

11
2
3
.
.
.
N

Field x =

December 4, 2014 16
http://legion.stanford.edu

Regions

 Two Dimensions

 Unbounded set of rows

 Bounded set of columns
  Fields

 Tasks declare
  Which fields they use
  And how they use them

 Regions can be
partitioned

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Voltage Capac. Induct. Charge

December 4, 2014 17
http://legion.stanford.edu

Partitioning

SP

N

December 4, 2014 18
http://legion.stanford.edu

Partitioning

N

SP

p1 pn … s1 sn … g1 gn …

December 4, 2014 19
http://legion.stanford.edu

Organize Into Pieces

N

SP

p1 pn … s1 sn … g1 gn …

December 4, 2014 20
http://legion.stanford.edu

Embedded in C++

Can write any C++ code within a task
  Local state, pointers, etc.
  Must follow discipline when using Legion API

 Regions are first class
  Can be passed as arguments, stored in data structures

December 4, 2014 21
http://legion.stanford.edu

Populating Regions

 Can’t read/update a region without an instance
  Instances hold a valid current copy of the data

December 4, 2014 22
http://legion.stanford.edu

Populating Regions

 To read/update a region, need an accessor
  A handle to reference, or iterate through, elements

December 4, 2014 23
http://legion.stanford.edu

Regions: Privileges & Coherence

December 4, 2014 24
http://legion.stanford.edu

Back to the Simulation

One task per
circuit piece

Read/Write on wires pieces
Read Only on everything else

December 4, 2014 25
http://legion.stanford.edu

The Crux

 Crucial design decisions in a Legion program are:

 What are the regions?
  How are the regions partitioned into subregions?

 What are the tasks?
  How are the tasks decomposed into subtasks?

 Often tension between the two
  These decisions drive the program’s design

December 4, 2014 26
http://legion.stanford.edu

Summary

 The programmer
  Describes the structure of the program’s data

  Regions
  The tasks that operate on that data

 The Legion implementation

  Guarantees tasks appear to execute in sequential order
  Ensures tasks have valid versions of their regions

December 4, 2014 27
http://legion.stanford.edu

Mapping Interface
 Programmer selects:

  Where tasks run
  Where regions are placed

 Mapping computed dynamically

 Decouple correctness from
performance

27	

t1

t2

t3

t4
t5

rc

rw

rw1 rw2

rn

rn1 rn2

$

$

$

$

N
U
M
A

N
U
M
A

FB

D
R
A
M

x86

CUDA

x86

x86

x86

December 4, 2014 28
http://legion.stanford.edu

Mapping

 Mapper interface = callback interface
  Legion runtime calls user-supplied methods
  Can do arbitrary computation to make decisions

  But often very simple

December 4, 2014 29
http://legion.stanford.edu

The Crux, Revisited

 Crucial design decisions in a Legion program are
  What are the regions?
  What are the tasks?

  In particular, mapping decisions depend on design
of the regions and tasks

  Not the other way around

December 4, 2014 30
http://legion.stanford.edu

Debugging

December 4, 2014 31
http://legion.stanford.edu

LegionProf (Heptane 483)

4 AMD
Interlagos

Integer cores
for Legion
Runtime

8 AMD
Interlagos FP

cores for
application

NVIDIA Kepler K20

Dynamic Analysis for (rhsf+2) Clean-up/meta tasks

December 4, 2014 32
http://legion.stanford.edu

Questions?

