Legion Bootcamp: Data Model

Sean Treichler

Tasks Operate on Data

@ A task has a stack and heap — used for private (intra-task)
data

@ Nearly all data shared between tasks lives in logical regions

@ Logical regions are explicitly created (and destroyed) by app

@ Tasks are annotated with which regions (or parts of regions)
they will access

Logical Regions

@ Alogical region is a collection of elements, each of which has
data stored in one or more fields

@ All elements in a region use the same set of fields

@ Element named by its index, which is constant for lifetime of
element

@ Can be safely stored as a “pointer” in other data structures

@ Logical regions are “logical” because:

@ They are not fixed in a particular memory — they can migrate, or be
sharded or replicated

@ They don’t have a fixed layout in memory

@ Decisions about placement and layout are made by mapper
without changes to app code

Logical Regions are like...

@ Arrays of structures:
region[index] .field = value
@ Efficient address calculation
@ Compact storage

@ Relational database tables:

update region set field = value where key = index;
@ Efficient views

@ Projections

@ Some join-like operations

@ Replication/sharding

Creating a Logical Region

LogicalRegion lr = runtime->create_logical region(ctx, is, fs);

@ To create a logical region, you must provide:
@ An index space — the “names” of elements in the logical region
@ A field space — the set of fields that will exist for each element

@ Runtime returns a logical region handle that may be:
@ Immediately used in the current task
@ Used by any child task launched after the region is created
@ Used by the parent task after the current task has finished

@ Can create multiple logical regions with the same index and/
or field spaces
@ Each has the same “structure”, but distinct data

Index spaces

@ Index spaces may be unstructured or structured

@ Unstructured index spaces:
@ use opaque ptr_t as index
@ support dynamic alloc/free of elements
@ may be sparse

@ Structured index spaces:

@ defined over N-dimensional rectangle (currently N <= 3)
@ use N-dimensional point as index
@ currently always dense (no alloc/free)

@ Plan is to unify these over time

@ e.g. support for sparse matrices

Unstructured Index Space Example

// for now, have to place an upper bound on number of elements
IndexSpace is = runtime->create_index space(ctx, max num elmts);
IndexAllocator isa = runtime->create_ index space allocator(ctx, is);

// can alloc and free individual elements

ptr t p = isa.alloc();
isa.free(p);

// can also alloc and free in bulk
int count = 200;

ptr_t ps = isa.alloc(count);

isa.free(ps, count);

Structured Index Space Example

// create a Rect<N> describing the range we want to cover
Point<2> lo; 1lo.x[0] = 10; 1lo.x[1l] = -100;

Point<2> hi; hi.x[0] = 15; hi.x[1] = 100;

Rect<2> range(lo, hi); // bounds are both inclusive

IndexSpace is = runtime->create_ index space (ctx,
Domain: :from rect<2>(range)) ;

runtime->destroy index space(ctx, 1is);

Field Space Example

FieldSpace fs = runtime->create field space(ctx);

FieldAllocator fsa = runtime->create field allocator(ctx, fs);

// allocate a field with an app-chosen field ID...
fsa.allocate field(sizeof (double), FID MYFIELD) ;

// or let the runtime pick an unused ID for you
FieldID fid = fsa.allocate field(sizeof(int));

fsa.free field(FID MYFIELD);

Data Operations on Elements

@ We distinguish between three types of operations on fields
of an element:

@ Read:

value = region[index].field;

@ Write:

region[index] .field = value;

@ Reduction (per-element):
region[index] .field += wvalue;
region[index] .field *= wvalue;
region[index] .field = user fn(region[index].field,

value) ;

10

Accessing a Logical Region

@ Can’t access a logical region directly... Why?
@ Logical regions don’t have a fixed location in memory

@ Instead, we need to:
1) Map the logical region to a physical instance (PhysicalRegion)
2) Obtain a RegionAccessor for the desired field
3) Perform data access operations on the RegionAccessor

@ Let’s go through each of these steps in more detail

11

Obtaining a PhysicalRegion

@ To get a usable physical instance, we need to:

1) describe the “requirements” - what we need in the instance and
what opearations we want to perform

=2)=initiateTa'mappingof:the’logical'region

3) decide whether to create a new instance or re-use an existing one
4) decide which of the region’s fields should be stored in the instance

5) decide in which Memory to place the instance
6) decide how the instance should be laid out — e.g. AOS vs. SOA
7) determine what task(s) are producing the data we need

8) determine what copies must be performed

|-9)—wait-until-tasks/copies-are-complete]

@ A team effort:
I application I runtime mapper

12

Region Requirements

@ App creates a RegionRequirement object which stores:

v

v

W

™

>

Logical region (or subregion) containing elements that may be
accessed

Fields that may be accessed

Privileges (read, write, reduce) that may be needed
Coherence mode (exclusive or relaxed)

Parent logical region (to determine available privileges)

@ Index space launches can use a set of logical regions and a
projection function to map tasks to regions

@ Coming soon: ability to request different privileges for
different fields

13

Privilege Containment Property

@ A subtask may only request privileges that its parent holds
- Or -

@ A parent task must request any privileges that may be
needed by a subtask

@ Allows sound hierarchical reasoning about application

@ A task’s privileges bound the effects of it and all possible
descendents

@ Enables Legion’s scalable distributed scheduling algorithm

14

Requesting the mapping

@ Two ways to request a physical instance for a logical region

@ Explicit request within a task (“inline mapping”)
RegionRequirement req(logical region, ...);
PhysicalRegion pr = runtime->map region(ctx, req);

// other stuff if you’ve got anything independent to do
pr.wait until valid();

@ Automatically performed for all* region requirements for a new task
launcher.add region_ requirement (req) ;

runtime->execute task(ctx, launcher);

void my task(..., std::vector<PhysicalRegion>& regions, ...)

{}

@ PhysicalRegion handle is valid until end of task or explicit unmap

15

Obtaining a RegionAccessor

@ A PhysicalRegion can have many potential layouts in
memory

@ Possibly even different layouts for fields in same instance

@ Amortize decisions about how to efficiently access it in the
form of a RegionAccessor

@ One for each field

@ GenericAccessor supports the following operations:

T value = accessor.read(index) ;
accessor.write(index, new value);
accessor.reduce<REDOP>(index, reduce value);

AT specialized accessor = accessor.convert<AT>() ;

T *array ptr = accessor.raw _rect ptr(...);

16

Efficient access — specialized accessors

@ Use convert method to convert a GenericAccessor into one
optimized for particular layouts:

@ AOS/SOA<N> - allows array-indexing-like address calculation if
stride between adjacent elements is consistent (stride N can be
fixed at compile time or determined dynamically)

@ ReductionFold - similar, but for reduction-only instances
@ ReductionlList — handles appending to reduction list instance
@ more as needed...

17

Efficient access — specialized accessors (2)

@ Specialized accessors support (often subset of) same read/
write/reduce methods
@ Allows code to be templated on accessor type
@ Methods generally inlined to expose optimization opportunities

@ Conversion will fail if PhysicalRegion layout is incompatible
with specialized accessor
@ Can check first with can_convert() method
@ Or just make sure mapper demands correct layout
@ Soon: Specify constraints so runtime can select correct variant

18

Efficient access — raw array pointer

@ Gets a raw base pointer and strides — you perform
addressing computations

@ Useful when interfacing with C/Fortran, or when manual strength
reduction optimizations are needed

@ Pointers valid only until PhysicalRegion is unmapped

Rect<DIM> in rect; // rect for which pointers are requested
Rect<DIM> out rect; // subrect where ptrs are actually valid
ByteOffset strides[DIM]; // address stride in each dimension

T *base ptr; // address of top-left element

base ptr = accessor.raw_rect ptr<DIM>(in_rect, out rect, strides);

// 1-D iteration

for(int i = out_rect.lo[0]; i <= out rect.hi[0]; i++) {
T val = *base ptr;
base ptr += strides[0];

}

19

Precision: Correctness vs. Performance

@ Precision in requirements is rewarded

@ Underspecifying requirements leads to runtime errors or race
conditions (if runtime checks are disabled)

@ Overspecifying requirements leads to extra copying, reduced
parallelism

@ Precise specification of fields and privileges isn’t too hard
@ Generally easy to determine from static/human analysis of code
@ Conditionals in code can still cause issues though

@ Harder problem for specifying which elements of region will
be accessed

@ Need efficient way of describing/naming arbitrary subsets of
elements in a region

20

Partitions, Subregions

@ A partition gives names to subsets of a logical region
@ Each partition has one or more subregions

@ Subregions are identified by their “color”, a unique index in a
“color space” (usually a 1-D index space)

@ The subregions of a partition may be disjoint or aliased

@ Subregions may be further partitioned
@ Creates a “region tree”
@ Can help match hierarchical structure of task decomposition
@ Or hierarchical structure of memory
@ Or application communication patterns

v LN]

21

Multiple Views on the Same Data

@ Partitioning names new subsets, but keeps old ones

@ Can use both parent region and subregions in subsequent
mappings

@ Runtime understands relationship, manages parallelism/coherence

@ Multiple partitions may be defined of the same region
@ Provides multiple (possibly overlapping) views of the same data
@ Each partition also assigned a “color” (an app-specified ID)

@ Colors can be used to walk down from root to any partition/
subregion

@ Allows other tasks to find subregions without sending all the
handles around

22

Partitioning Example

23

A few more details

@ Partitioning actually an operation on an IndexSpace
@ Creates an “index tree” of IndexPartitions and IndexSpaces

@ Implicitly defines a region tree for all logical regions using that

index space
@ Can move from one to the other with:

IndexPartition ipart = ...;
= runtime->get logical partition(ctx, lr root,

LogicalPartition lpart =
ipart) ;

assert (ipart == lpart->get index partition());

@ Two APIs for specifying partitions:
@ Coloring, DomainColoring — works now, but has limits

@ Region algebra — planned new approach, coming soon

24

Partitioning Example (current)

// instantiate Coloring data structures (STL maps and sets)
Coloring c_pvtvsshr, c _pvt, c_shr, c_ghost, c_wires;

// manually iterate over the elements in the nodes index space
for (IndexIterator it(is_nodes); it.has next(); it++
IndexIterator it(is_nodes);
while (it.has_next()) {

ptr t n = it.next();

// some thinking and probably accessing of fields here...
int owner = ...; std::set<int> neighbors = ...;

// add pointer to appropriate sets...
if (neighbors.empty()) {
c_pvt[owner] .points.insert(n);
c_pvtvsshr[COLOR_PVT] .points.insert(n);
} else { ... }

// now create the index space tree
IndexPartition ip pvtvsshr = runtime->create index partition(ctx, is nodes, c_pvtvsshr);
IndexSpace is_allpvt = runtime->get_index subspace(ctx, ip pvtvsshr, COLOR Partition
p_pvt = partition(N_allprivate.part num);
IndexPartition ip pvt = runtime->create_index partition(ctx, is_allpvt, c_pvt);

25

Limitations of Current Partitioning API

@ Verbosity

@ Direct manipulation of coloring for each element in index space

@ Redundancy

@ Common for several partitions to be “related” to each other
@ Each must be specified independently (but consistently!)

@ Serial, not distributed
@ Coloring is an STL data structure
@ Not something the Legion runtime understands
@ Not something some code generators will understand either

26

New Partitioning API (work in progress)

@ Eliminates Coloring objects

@ Operations to calculate “colorings” become runtime
operations
@ Still initiated by application
@ Distributed/deferred by runtime

@ Operations divided into three classes:

@ Index-based partitions — based only on properties of the index
space

@ Field-based partitions — define partition based on contents of a
field

@ Dependent partitions — define partitions based on other partitions

27

Index-based Partitioning

@ Unstructured index spaces
@ Effectively sharding
@ Useful for computations with no inter-element communication
@ Useful for providing initial seed for smarter partitioning decisions

@ Structured index spaces
@ Blocking
@ Arbitrary sub-rectangles

28

Field-based Partitioning

FS,

@ Use a field’s content as the
“color” of an element
@ Allows colors to be computed

in parallel/distributed
fashion

@ Like a “GROUP BY” in SQL

lw|lwla|lndv| w2 =

@ Partitions are disjoint by : :

definition 2

@ No efficient way to do “multi-
coloring”

@ Only raw field value for now

29

Dependent Partitioning

FS,

[- [ptr |

@ Set operations

. . . LR, 1S,
@ Union, intersection, subtraction

@ Partitions: per-element or
reduction

@ “Join” operations

@ Can be used when field holds
pointer to another index space

ANENARVA;
}H NIX)

@ image finds subspaces
reachable from an index space
or partition

<

30

Dependent Partitioning

FS,

| [ptr |

@ Set operations
IS, LR, IS,

@ Union, intersection, subtraction

@ Partitions: per-element or

reduction

@ “Join” operations

@ Can be used when field holds
pointer to another index space

ANENARVA;
}H NIX)

@ image finds subspaces
reachable from an index space
or partition

<

@ preimage finds subspace that
can reach the space/partition

31

Partitioning Example (improved)

task simulate circuit(Region[Node] N, Region[Wire] W)

{

parmetis (N, W); // uses index-based partition internally

// “independent” partition from parmetis’ “coloring”
Partition p nodes = partition(N.part num) ;

// wires partitioned by ownership of “in” node
Partition p wires = preimage(p_nodes, W.in node);

// ghost nodes are unowned connected to our wires
Partition p ghost = image(p_wires, W.out node) - p nodes;

// shared nodes are those that are ghost for somebody
Region[Node] N _allshared = union_ reduce (p_ghost) ;

// private are the others
Region[Node] N _allprivate = N - N_allshared;

// private and shared for each circuit piece
Partition p pvt = partition(N_allprivate.part num) ;
Partition p shr = partition(N_allshared.part num);

32

