The Legion Mapping Interface

Mike Bauer

December 4, 2014 http://legion.stanford.edu



Philosophy

@ Decouple specification
from mapping

@ Performance portability

@ Expose all mapping (perf)
decisions to Legion user
@ Guessing is bad!

@ Don’t want to fight Legion
for performance

@ Propagate mapping
control up through layers
of abstraction

@ Dynamic Mapping
@ React to machine changes
@ React to app. changes

App Autotuner

DSL

A

Machine Hardware

December 4, 2014 http://legion.stanford.edu

N
> IEAIamos

NATIONAL LABORATORY

& EST.1943
~ < NVIDIA
N o

Control of
Mapping



A
° IEAIamos

NATIONAL LABORATORY

Machine Model

@ Machine is a graph of
processors and memories

. @A NVIDIA.

@ Nodes contain attributes

@ Processors: kind, speed

@ Memories: kind, capacity,
“hardness”

Zero-Copy

@ Edges describe
relationships
@ Processor-Memory affinity
@ Memory-Memory affinity
@ Bandwidth, latency

@ Machine object interface

December 4, 2014 http://legion.stanford.edu



N
> I./ojsAIamos

NATIONAL LABORATORY

Mapper Model

EST.1943

@ Create a separate mapper for each processor
@ Mappers can specialize themselves
@ Avoid bottlenecks on mapping queries

@ Support arbitrary number of mappers per application
@ Compose applications and libraries with different mappers

@ Initialized at start-up of Legion runtime
@ set _registration callback function
@ Add mappers with the add _mapper function

@ Default mapper is always given MapperID 0
@ Can be replaced with replace default mapper function

ROEEBEROEALREOE BREEBERBERER
CPU CPU GPU CPU CPU GPU
Node Node

December 4, 2014 http://legion.stanford.edu



Mapper API

@ Mapping APl is a pure
virtual interface

@ Easy to extend existing
mappers

@ Methods invoked by the
runtime as queries

@ At most one invocation
per mapper at a time

@ No need for locks

@ Mappers can be stateful

@ Memoize information
@ State is distributed

December 4, 2014

/O
> I.?sAIamos

NATIONAL LABORATORY

SANVIDIA.

class Mapper {
public:
virtual void
select task options(Task*) = 0;
public:

virtual void

pre map task(Task*) = 0;
virtual void

map task(Task*) = 0;
virtual void

post map task(Task*) = 0;

http://legion.stanford.edu



N
> L?s Alamos

NATIONAL LABORATORY

Default Mapper

@ Legion comes with a Start
default mapper l

@ Implement custom

EST.1943
/\
— @ NVIDIA
N ®

mappers that inherit Aopioation
from default mapper Execution
@ Only need to customize l
specific mapper calls
@ Leverage open/closed Determine
principle of software PBeorI’fl)g:::;se
engineering
@ Lends itself to a natural l
performance tuning loop Continue
@ Repeat for each Customizing
application+architecture Mapper

@ Easy to autotune

December 4, 2014 http://legion.stanford.edu



N
> I.?sAIamos

NATIONAL LABORATORY

The Lifetime of a Task

s EST.1943
— @~ NVIDIA
\ ®

@ Mapper calls for tasks follow the task pipeline

@ Not all calls handled by the same mapper object
@ Tasks can map both locally and remotely
@ Guaranteed to be handled by mappers of the same ID

Always Done Locally Can Be Done Locally or Remotely

Select ' Select
Task Pre-Map u| Map Task Task Post-Map
. Task I : Task
Options | Variant

December 4, 2014 http://legion.stanford.edu



N
> L?s Alamos

NATIONAL LABORATORY

Mapping Locally vs. Remotely st

@ Three important processors associated with Task
@ Origin Processor (orig_proc): where task was launched
@ Current Processor (current proc): owner of the task
@ Target Processor (target proc): current mapping target

@ Tasks can be mapped locally or remotely
@ Locally: current proc == orig proc
@ Remotely: current proc == target proc (!=orig proc)

4 Orig Proc ) Move Task 4 Target Proc )

Meta-Data
Task > Task
Handle Handle
I\/Iapping Move Launch Mapping
: Meta-Data Queri
Queries ueries
\_ —> Launch!  /

Task Meta-Data >> Launch Meta-Data Remote Mapping -> More Parallelism
8

December 4, 2014 http://legion.stanford.edu



AAAAAAAAAAAAAAAAAA

EST.1943
. VIDI
< NVIDIA.

Select Task Options

@ virtual void select task options(Task *task)
@ Currently decorate fields of Task object
@ Planned: structure describing options

@ Assign the following fields:
@ target_proc — pick the first owner processor
@ inline_task — inline using parent task’s physical regions
@ spawn_task — make eligible for stealing

@ map_locally — map the task locally or remotely
@ profile_task — capture profiling information

Select Select
Task Pre-Map Map Task Task Post-Map
: Task : Task
Options Variant

December 4, 2014 http://legion.stanford.edu




N
> L?s Alamos

NATIONAL LABORATORY

Task Mapping (Part 1)

@2 NVIDIA.

@ Tasks always have an “owner” processor

@ Owner can be changed until a task is mapped
@ Once a task is mapped it will run on owner processor

@ Mapping a task consists of three decisions
@ Fixing the owner processor
@ Selecting memories for physical instances of each region
@ Determining layout constraints for physical instances

Select Select
Task Pre-Map Map Task Task Post-Map
: Task : Task
Options Variant

10
December 4, 2014 http://legion.stanford.edu



/)
> Lc’)z Alamos

NATIONAL LABORATORY

Task Mapping (Part 2)

@ virtual bool map task(Task *task)
@ Choose memory ordering for each region requirement
@ Return ‘true’ to be notified of mapping result

@ Task has a vector of application-specified regions
@ Represented by region requirements

EST.1943
\
<2 NVIDIA.

@ Called regions

@ Legion provides list of current memories with data

@ Called current instances
@ Boolean indicates if contains valid data for all fields

@ Mapper ranks target memories in target ranking
@ Runtime tries to find or create instance in each memory
@ Will issue necessary copies and synchronization

@ Choose layout by selecting blocking factor

1
December 4, 2014 http://legion.stanford.edu



N
> I.?sAIamos

NATIONAL LABORATORY

Task Mapping (Part 3) SANVIDIA

@ Legion automatically computes copies based on
mapping decisions
@ Sometimes there might be multiple valid sources
@ Never guess! (Legion knows what to do if only one source)

@ virtual void rank copy sources(..)
@ Set of possible source memories
@ Memory containing physical instance
@ Populate a vector ranking source memories by preference

DRAM
- Framebuffer
I . !
GASNet | e[

12
December 4, 2014 http://legion.stanford.edu



N
> L?s Alamos

NATIONAL LABORATORY

Task Mapping (Future)

EST.1943
/\
— @ NVIDIA
N ®

@ New mapping API in progress
@ Switch from memory centric to physical instance centric
@ Be field aware
@ Support more data layout formats

@ map_task will not change much

@ Legion will provide information about physical instances
@ Layout, field sizes, which fields are valid

@ Mappers provide ranking of physical instances

@ Physical instances specified as a set of constraints
@ Order of index space dimensions + field interleaving
@ Constraints on specific pointers and offsets

13
December 4, 2014 http://legion.stanford.edu



N
> L?s Alamos

NATIONAL LABORATORY

Selecting Task Variants Ry
— @2 NVIDIA.

@ Task variant selected based on mapping decisions

@ Legion examines all constraints and picks variant
@ Processor kind, physical instance memories and layouts

@ If there are multiple valid variants then query mapper

@ virtual void select task variant (Task *task)

@ Might require many variants. Is there a better way?
@ Yes! Task generator functions (using meta-programming)

Select Select
Task Pre-Map Map Task Task Post-Map
: Task : Task
Options Variant

14
December 4, 2014 http://legion.stanford.edu



AAAAAAAAAAAAAAAAAA

EST.1943
. VIDI
< NVIDIA.

Dealing with Failed Mappings

@ Mappings can fail for many reasons
@ Resource utilization
@ Memories not visible from target processor
@ No registered task variant based on constraints

@ virtual void notify mapping failed(...)
@ Region requirements annotated by mapping failed field

@ Failed tasks automatically ready to map again
@ Mappers can try mapping them again later
@ Watch out for repeated failures (looks like livelock)
@ Future work: establish conditions for re-mapping

15
December 4, 2014 http://legion.stanford.edu



N
> L?s Alamos

NATIONAL LABORATORY

Pre-Map Task (Part 1)

@ virtual bool pre map task(Task *task)
@ Can early-map region requirements to physical instances
@ Performed on origin processor before task can be moved
@ Return ‘true’ to be notified of pre-mapping result

@ Handle some special cases
@ Read-Write coherence on index space task region

Select Select
Task Pre-Map Map Task Task Post-Map
: Task : Task
Options Variant

16
December 4, 2014 http://legion.stanford.edu



N
> I./ojsAIamos

NATIONAL LABORATORY

Pre-Map Task (Part 2)

Y EST.1943
¥ ANVIDIA
= ®

@ Runtime performs
“close operations” as
part of pre-mapping task

@ Handle translation

t, t, t;
between different views
@ Two options: S—E
@ Concrete Instance

@ Composite Instance

@ Composite Instances

@ Memoize intersection

tests to amortize cost
December 4, 2014 http://legion.stanford.edu

virtual bool rank_copy_targets(...)

return true for composite instance
17



N
> L?s Alamos

NATIONAL LABORATORY

Post-Map Task (In Progress)

@ Create optional checkpoints of logical regions
@ Generate physical instances in hardened memories
@ Copies automatically issued by Legion runtime
@ Control which logical regions and fields are saved

Select Select
Task Pre-Map Map Task Task Post-Map
: Task : Task
Options Variant

December 4, 2014 http://legion.stanford.edu b



N
JQgAhnms

NATIONAL LABORATORY

Mapping Other Operations

@ Legion maps many operations other than tasks
@ Inline mappings
@ Explicit region-to-region copies

@ Similar mapping calls, all on origin processor
¢ virtual void map_ copy(Copy *copy)

@ virtual void map inline(Inline *inline_ op)

@ Map region requirements the same as tasks

19
December 4, 2014 http://legion.stanford.edu



» Los Alamos

NATIONAL LABORATORY

Managing Deferred Execution
~- @A NVIDIA.

@ Legion is an out-of-order task processor
@ How far do we run ahead (into the future)?
@ Machine and application dependent -> mapper decision

Analysis from Tasks from
/ iteration i+2 iteration i
Utility Core{--.u.ml grm . R s bl S,
I N [ 7 [ - I Bl
| [ [ N —— I | [ (B
I [ | I I
AMD |nter|agos L T A R - - —
Cores — & =am | [ | (I
N [T I | [H T T R S Il
LN EEEENEREE  BEREE BT e e T | I
____ I I N | | 1 Il I |
I . I I . ¥  JNNNNNINNEE N
Il L e B[ A I I
NVIDIA NI A . | e (s [ | | ||
Kepler K20

20
December 4, 2014 http://legion.stanford.edu



Managing Deferred Execution (2)

@ Two components of managing run-ahead
@ How many sub-tasks outstanding per task?
@ When should tasks begin the mapping process?

@ Control max outstanding sub-tasks with window size
@ virtual void configure context(Task *task)
@ Setmax_ window size (default 1024)
@ Can be unbounded (any negative value)
@ Trade-off parallelism discovery with memory usage

@ Control max outstanding sub-tasks with frames

@ Call issue_frame at the start of each iteration
@ Setmax outstanding frames

21
December 4, 2014 http://legion.stanford.edu



Managing Deferred Execution (3)

@ Legion maintains ready queue for each mapper
@ Contains tasks that are ready to map

N
> I.?sAIamos

NATIONAL LABORATORY

y EST.1943

B R D N D DN D D J 3 3 J 311 _1
ofrj2oj1j21of1]ommao]ij2]oji]j2]ofi1]2

1
CP

U

1
CPU

G

1 1
PU CPU

1
CPU

G

1
P

U

Node

@ Mappers decide when to start mapping tasks

Node

@ virtual void select tasks to_schedule(list<Task*>)

@ Open question: when to stop invocation?
@ Right now: when “enough” tasks outstanding (-hl:sched)

@ Can perform one of three operations for each task
@ Start mapping (set schedule field of Task* to true)
@ Change current proc to new processor to send remotely
@ Do nothing: important for loading balancing

December 4, 2014

http://legion.stanford.edu

22



N
> L?s Alamos

NATIONAL LABORATORY

Inter-Node Load Balancing A
<2 NVIDIA.

@ Legion supports both push and pull load balancing
@ Push tasks to other nodes
@ Pull work from other nodes (e.g. stealing)

@ Two forms of push

@ Change current proc in select tasks_ to schedule

@ virtual void slice_domain(...)
@ Decompose index space into subsets and distribute
@ Recursively slice subsets, specify target processor
@ Index space tasks: slice into subsets of points
@ Look at is_index_space to determine if slice or single task
@ index_domain gives bounds of slice

Node O Node 1 Node 2 Node 3

December 4, 2014 http://legion.stanford.edu




Task Stealing

@ Legion also supports pull load balancing via stealing
@ Stealing is totally under control of mappers
@ Mappers can only steal tasks from mappers of the same kind

@ Stealing in Legion is two-phase

@ Send requests: virtual void target_task_steal(...)

@ Choose targets for stealing (no guessing by Legion)

N
> I./ojsAIamos

NATIONAL LABORATORY

EST.1943
_;:”;-?’>

@ Approve requests: virtual void permit_task_steal(...)

@ Tasks can only be stolen from ready queues
@ Cannot steal already mapped tasks

December 4, 2014

4 Nada 0 Steal Request >/ "y
- Stolen Tasks!
Steal Request
D . Steal Failure! D
CPY Advertise CPY
Vs \_

~

J

http://llegion.stanford.edu

Invoke Permit

Invoke Permit

New Task!
24



N
> L?s Alamos

NATIONAL LABORATORY

Intra-Node Load Balancing I
— @2 NVIDIA.

@ Stealing is inefficient within a node
@ Support mapping tasks onto multiple processors in a node

@ Can assign additional procs in map task
@ Must be of the same kind as target proc, on same node
@ Must be able to access all physical instances
@ Legion automatically checks these properties
@ Will ignore bad processors and issue warning
@ Create internal queues for running these tasks
@ Processors pull highest priority task from all their queues

NUMA Queue | All-CPU Queue NUMA Queue

=/ O —

CPU CPU CPU CPU
http://legion.stanford.edu

December 4, 2014 25



N
JQgAhnms

NATIONAL LABORATORY

Program Introspection e
<2 NVIDIA.

@ Mappers can (immutably) introspect data structures
@ Region tree forest: index space trees, logical region trees
@ Task variant collections
@ Semantic tags describing tasks and regions
@ Dynamic dependence graph (computed by runtime)

@ Mappers can profile task execution
@ Set profile task totrue in select task options
@ virtual void notify profiling info(Task *task)
@ Currently profile basic properties (e.g. execution time)
@ What else do we need?

26
December 4, 2014 http://legion.stanford.edu



N
JQgAhnms

NATIONAL LABORATORY

Other Mapping Features

@2 NVIDIA.

@ Tunable variables
@ Abstract variables that depend on machine (e.g. # of partitions)
¢ virtual int get tunable variable(..)

@ Virtual mappings
@ Some tasks only need privileges, don’t need a physical inst.
@ Virtually map region requirement by setting virtual map
@ Child task mapping flows back into parent context

@ Controlling speculation
@ Mapper controls speculation on predicated tasks
@ virtual void speculate on_ predicate(..)
@ Don’t speculate for now, available soon ©

27
December 4, 2014 http://legion.stanford.edu



Avoiding Resource Deadlocks

@ Sibling tasks with a
dependence cannot map
until all children have
mapped

@ Enforced automatically ‘/]\

by the runtime

T & T T
@ Necessary to avoid M /\
resource deadlock
T T T T
@ Is there a better way?

28
December 4, 2014 http://legion.stanford.edu



N
> L?s Alamos

NATIONAL LABORATORY

Open Mapping Questions

EST.1943
/\
— @ NVIDIA
N ®

@ Resource constrained mapping
@ Right now we map one task at a time
@ Map multiple tasks together to optimize resource usage
@ Trade-off parallelism with resource usage

@ Task fusion + mutation of dynamic dependence graph

@ Fuse operations to support better data re-use
@ More on this in meta-programming talk later today

@ Other manipulations on dynamic dependence graph?

@ Task replication
@ Why move data when you can compute it multiple times?
@ Replicate tasks to reduce overall data movement costs

December 4, 2014 http://legion.stanford.edu ®



