
December 4, 2014 1
http://legion.stanford.edu

Mike Bauer

The Legion Mapping Interface

December 4, 2014 2
http://legion.stanford.edu

Philosophy

 Decouple specification
from mapping

  Performance portability
 Expose all mapping (perf)
decisions to Legion user

  Guessing is bad!
  Don’t want to fight Legion
for performance
  Propagate mapping
control up through layers
of abstraction

 Dynamic Mapping
  React to machine changes
  React to app. changes

Machine Hardware

Legion

DSL

App Autotuner

Control of
Mapping

December 4, 2014 3
http://legion.stanford.edu

Machine Model
 Machine is a graph of
processors and memories

 Nodes contain attributes
  Processors: kind, speed
  Memories: kind, capacity,
“hardness”

 Edges describe
relationships

  Processor-Memory affinity
  Memory-Memory affinity
  Bandwidth, latency

 Machine object interface

CPU

NUMA

DRAM

Disk

Zero-Copy

NVRAM

CPU GPU OpenGL

NUMA

FB

December 4, 2014 4
http://legion.stanford.edu

Mapper Model
 Create a separate mapper for each processor

  Mappers can specialize themselves
  Avoid bottlenecks on mapping queries

 Support arbitrary number of mappers per application
  Compose applications and libraries with different mappers

  Initialized at start-up of Legion runtime
set_registration_callback function

  Add mappers with the add_mapper function
  Default mapper is always given MapperID 0

  Can be replaced with replace_default_mapper function

Node

CPU

D 1 2

CPU

D 1 2

GPU

D 1 2

Node

CPU

D 1 2

CPU

D 1 2

GPU

D 1 2

December 4, 2014 5
http://legion.stanford.edu

Mapper API
 Mapping API is a pure
virtual interface

  Easy to extend existing
mappers

 Methods invoked by the
runtime as queries

  At most one invocation
per mapper at a time
  No need for locks

 Mappers can be stateful
Memoize information
  State is distributed

class Mapper {
public:
 virtual void
select_task_options(Task*) = 0;
public:
 virtual void
 pre_map_task(Task*) = 0;
 virtual void
 map_task(Task*) = 0;
 virtual void
 post_map_task(Task*) = 0;
…
};

December 4, 2014 6
http://legion.stanford.edu

Default Mapper
 Legion comes with a
default mapper
  Implement custom
mappers that inherit
from default mapper

  Only need to customize
specific mapper calls
  Leverage open/closed
principle of software
engineering

 Lends itself to a natural
performance tuning loop

  Repeat for each
application+architecture
  Easy to autotune

Profile
Application
Execution

Determine
Performance
Bottlenecks

Continue
Customizing

Mapper

Start

December 4, 2014 7
http://legion.stanford.edu

Always Done Locally

The Lifetime of a Task

 Mapper calls for tasks follow the task pipeline

 Not all calls handled by the same mapper object
  Tasks can map both locally and remotely
  Guaranteed to be handled by mappers of the same ID

Select
Task

Options

Pre-Map
Task Map Task Post-Map

Task

Select
Task

Variant

Can Be Done Locally or Remotely

December 4, 2014 8
http://legion.stanford.edu

Mapping Locally vs. Remotely
 Three important processors associated with Task

  Origin Processor (orig_proc): where task was launched
  Current Processor (current_proc): owner of the task
  Target Processor (target_proc): current mapping target

 Tasks can be mapped locally or remotely
  Locally: current_proc == orig_proc
  Remotely: current_proc == target_proc (!= orig_proc)

Orig Proc Target Proc

Task Task

Launch!

Move Task
Meta-Data

Move Launch
Meta-Data

Handle
Mapping
Queries

Handle
Mapping
Queries

Task Meta-Data >> Launch Meta-Data Remote Mapping -> More Parallelism

December 4, 2014 9
http://legion.stanford.edu

Select Task Options

 virtual void select_task_options(Task *task)
  Currently decorate fields of Task object
  Planned: structure describing options

 Assign the following fields:
target_proc – pick the first owner processor
inline_task – inline using parent task’s physical regions
spawn_task – make eligible for stealing
map_locally – map the task locally or remotely
profile_task – capture profiling information

Select
Task

Options

Pre-Map
Task Map Task Post-Map

Task

Select
Task

Variant

December 4, 2014 10
http://legion.stanford.edu

Task Mapping (Part 1)

 Tasks always have an “owner” processor

 Owner can be changed until a task is mapped
  Once a task is mapped it will run on owner processor

 Mapping a task consists of three decisions
  Fixing the owner processor
  Selecting memories for physical instances of each region
  Determining layout constraints for physical instances

Select
Task

Options

Pre-Map
Task Map Task Post-Map

Task

Select
Task

Variant

December 4, 2014 11
http://legion.stanford.edu

Task Mapping (Part 2)
 virtual bool map_task(Task *task)

  Choose memory ordering for each region requirement
  Return ‘true’ to be notified of mapping result

 Task has a vector of application-specified regions
  Represented by region requirements
  Called regions

 Legion provides list of current memories with data
  Called current_instances
  Boolean indicates if contains valid data for all fields

 Mapper ranks target memories in target_ranking
  Runtime tries to find or create instance in each memory
  Will issue necessary copies and synchronization
  Choose layout by selecting blocking_factor

December 4, 2014 12
http://legion.stanford.edu

Task Mapping (Part 3)
 Legion automatically computes copies based on
mapping decisions

  Sometimes there might be multiple valid sources
  Never guess! (Legion knows what to do if only one source)

 virtual void rank_copy_sources(…)
  Set of possible source memories
  Memory containing physical instance
  Populate a vector ranking source memories by preference

DRAM

GASNet

Framebuffer

December 4, 2014 13
http://legion.stanford.edu

Task Mapping (Future)

 New mapping API in progress
  Switch from memory centric to physical instance centric
  Be field aware
  Support more data layout formats

map_task will not change much
  Legion will provide information about physical instances

  Layout, field sizes, which fields are valid
  Mappers provide ranking of physical instances

 Physical instances specified as a set of constraints
  Order of index space dimensions + field interleaving
  Constraints on specific pointers and offsets

December 4, 2014 14
http://legion.stanford.edu

Selecting Task Variants
 Task variant selected based on mapping decisions

 Legion examines all constraints and picks variant
  Processor kind, physical instance memories and layouts

  If there are multiple valid variants then query mapper
  virtual void select_task_variant(Task *task)

 Might require many variants. Is there a better way?
  Yes! Task generator functions (using meta-programming)

Select
Task

Options

Pre-Map
Task Map Task Post-Map

Task

Select
Task

Variant

December 4, 2014 15
http://legion.stanford.edu

Dealing with Failed Mappings

 Mappings can fail for many reasons
  Resource utilization
  Memories not visible from target processor
  No registered task variant based on constraints

 virtual void notify_mapping_failed(…)
  Region requirements annotated by mapping_failed field

 Failed tasks automatically ready to map again
  Mappers can try mapping them again later
  Watch out for repeated failures (looks like livelock)
  Future work: establish conditions for re-mapping

December 4, 2014 16
http://legion.stanford.edu

Pre-Map Task (Part 1)

 virtual bool pre_map_task(Task *task)
  Can early-map region requirements to physical instances
  Performed on origin processor before task can be moved
  Return ‘true’ to be notified of pre-mapping result

 Handle some special cases
  Read-Write coherence on index space task region

Select
Task

Options

Pre-Map
Task Map Task Post-Map

Task

Select
Task

Variant

December 4, 2014 17
http://legion.stanford.edu

Pre-Map Task (Part 2)

 Runtime performs
“close operations” as
part of pre-mapping task

 Handle translation
between different views

 Two options:
  Concrete Instance
  Composite Instance

 Composite Instances
Memoize intersection
tests to amortize cost

t1 t2 t3

virtual bool rank_copy_targets(…)

return true for composite instance

December 4, 2014 18
http://legion.stanford.edu

Post-Map Task (In Progress)

 Create optional checkpoints of logical regions
  Generate physical instances in hardened memories
  Copies automatically issued by Legion runtime
  Control which logical regions and fields are saved

Select
Task

Options

Pre-Map
Task Map Task Post-Map

Task

Select
Task

Variant

December 4, 2014 19
http://legion.stanford.edu

Mapping Other Operations

 Legion maps many operations other than tasks
  Inline mappings
  Explicit region-to-region copies

 Similar mapping calls, all on origin processor
  virtual void map_copy(Copy *copy)
  virtual void map_inline(Inline *inline_op)

 Map region requirements the same as tasks

December 4, 2014 20
http://legion.stanford.edu

Managing Deferred Execution

 Legion is an out-of-order task processor
  How far do we run ahead (into the future)?
  Machine and application dependent -> mapper decision

NVIDIA
Kepler K20

 AMD Interlagos
cores

Utility Core

Analysis from
iteration i+2

Tasks from
iteration i

December 4, 2014 21
http://legion.stanford.edu

Managing Deferred Execution (2)
 Two components of managing run-ahead

  How many sub-tasks outstanding per task?
  When should tasks begin the mapping process?

 Control max outstanding sub-tasks with window size
  virtual void configure_context(Task *task)
  Set max_window_size (default 1024)
  Can be unbounded (any negative value)
  Trade-off parallelism discovery with memory usage

 Control max outstanding sub-tasks with frames
  Call issue_frame at the start of each iteration
  Set max_outstanding_frames

December 4, 2014 22
http://legion.stanford.edu

Managing Deferred Execution (3)
 Legion maintains ready queue for each mapper

  Contains tasks that are ready to map

 Mappers decide when to start mapping tasks
  virtual void select_tasks_to_schedule(list<Task*>)
  Open question: when to stop invocation?

  Right now: when “enough” tasks outstanding (-hl:sched)

 Can perform one of three operations for each task
  Start mapping (set schedule field of Task* to true)
  Change current_proc to new processor to send remotely
  Do nothing: important for loading balancing

Node

CPU

D 1 2

CPU

D 1 2

GPU

D 1 2

Node

CPU

D 1 2

CPU

D 1 2

GPU

D 1 2

December 4, 2014 23
http://legion.stanford.edu

Inter-Node Load Balancing
 Legion supports both push and pull load balancing

  Push tasks to other nodes
  Pull work from other nodes (e.g. stealing)

 Two forms of push
  Change current_proc in select_tasks_to_schedule
  virtual void slice_domain(…)

  Decompose index space into subsets and distribute
  Recursively slice subsets, specify target processor

  Index space tasks: slice into subsets of points
  Look at is_index_space to determine if slice or single task
index_domain gives bounds of slice

Node 0 Node 1 Node 2 Node 3

December 4, 2014 24
http://legion.stanford.edu

Task Stealing
 Legion also supports pull load balancing via stealing

  Stealing is totally under control of mappers
  Mappers can only steal tasks from mappers of the same kind

 Stealing in Legion is two-phase
  Send requests: virtual void target_task_steal(…)

  Choose targets for stealing (no guessing by Legion)
  Approve requests: virtual void permit_task_steal(…)
  Tasks can only be stolen from ready queues

  Cannot steal already mapped tasks

Node 0 Node 1

CPU

D 1 2

CPU

D 1 2

Steal Request
Invoke Permit Stolen Tasks!

Steal Request
Invoke Permit

Steal Failure!

New Task! Advertise

December 4, 2014 25
http://legion.stanford.edu

Intra-Node Load Balancing
 Stealing is inefficient within a node

  Support mapping tasks onto multiple processors in a node

 Can assign additional_procs in map_task
  Must be of the same kind as target_proc, on same node
  Must be able to access all physical instances
  Legion automatically checks these properties

  Will ignore bad processors and issue warning

 Create internal queues for running these tasks
  Processors pull highest priority task from all their queues

CPU CPU CPU CPU

NUMA Queue NUMA Queue All-CPU Queue

December 4, 2014 26
http://legion.stanford.edu

Program Introspection

 Mappers can (immutably) introspect data structures
  Region tree forest: index space trees, logical region trees
  Task variant collections
  Semantic tags describing tasks and regions
  Dynamic dependence graph (computed by runtime)

 Mappers can profile task execution
  Set profile_task to true in select_task_options
  virtual void notify_profiling_info(Task *task)
  Currently profile basic properties (e.g. execution time)
  What else do we need?

December 4, 2014 27
http://legion.stanford.edu

Other Mapping Features

 Tunable variables
  Abstract variables that depend on machine (e.g. # of partitions)
  virtual int get_tunable_variable(…)

 Virtual mappings
  Some tasks only need privileges, don’t need a physical inst.
  Virtually map region requirement by setting virtual_map
  Child task mapping flows back into parent context

 Controlling speculation
  Mapper controls speculation on predicated tasks
  virtual void speculate_on_predicate(…)
  Don’t speculate for now, available soon J

December 4, 2014 28
http://legion.stanford.edu

Avoiding Resource Deadlocks

 Sibling tasks with a
dependence cannot map
until all children have
mapped

  Enforced automatically
by the runtime

 Necessary to avoid
resource deadlock

  Is there a better way?

T

T T T

T T T T

December 4, 2014 29
http://legion.stanford.edu

Open Mapping Questions

 Resource constrained mapping
  Right now we map one task at a time
  Map multiple tasks together to optimize resource usage
  Trade-off parallelism with resource usage

 Task fusion + mutation of dynamic dependence graph
  Fuse operations to support better data re-use

  More on this in meta-programming talk later today
  Other manipulations on dynamic dependence graph?

 Task replication
  Why move data when you can compute it multiple times?
  Replicate tasks to reduce overall data movement costs

