
December 4, 2014 1
http://legion.stanford.edu

Alex Aiken

Writing Legion Abstractions

December 4, 2014 2
http://legion.stanford.edu

Scope

 Cover some common approaches to structuring
Legion code

 Just based on our own experience

 And not comprehensive …

December 4, 2014 3
http://legion.stanford.edu

Launcher Class (legion.h)

December 4, 2014 4
http://legion.stanford.edu

Launcher Class (legion.h)

 Create a new launcher class per task
  Inherit from one of the launcher base classes
  (There is also a base class for index launches)

 Put all the code for a task in its launcher object
  Registration
  Launching
  Mapping
  Task variants can be static methods

December 4, 2014 5
http://legion.stanford.edu

Example

December 4, 2014 6
http://legion.stanford.edu

Another Example

December 4, 2014 7
http://legion.stanford.edu

So What?

  If each task is encapsulated in an object …

 With the same interface …

 Then task launches are easily templated
  Write the boilerplate code for launching tasks in one place
  Parameterized on the type of task T
  Different templates for different situations

  E.g., launch CPU variant vs. GPU variant

December 4, 2014 8
http://legion.stanford.edu

Example

 Note: These are also convenient places to include
any extra, related tasks you want to launch

  E.g., integrity checking, some in-situ analysis

December 4, 2014 9
http://legion.stanford.edu

Another Example

December 4, 2014 10
http://legion.stanford.edu

And Another Example

December 4, 2014 11
http://legion.stanford.edu

Task Registration

 And two more versions
  For registering a task with a non-void return type
  For registering a task with both CPU & GPU variants

December 4, 2014 12
http://legion.stanford.edu

Mapping Abstractions

MachineQueryInterface implements common
machine queries (and caches more expensive ones)

December 4, 2014 13
http://legion.stanford.edu

Mapping Abstractions

MappingMemoizer provides an interface for
memoizing task mapping decisions on a processor

December 4, 2014 14
http://legion.stanford.edu

Mapping Abstractions

 Cycles through all variants of a task
  And remembers the one with the best performance

December 4, 2014 15
http://legion.stanford.edu

A Word on Data Structures

  A field can hold a “pointer” to a region
  Or a region element
  Implemented as a pair: the region pointed to, and the index

within the region

  Guaranteed to be valid anywhere
  Regions can be moved from place to place and all region

references remain valid

  Caveat
  To dereference a region pointer, the region must be mapped
  Which ensures a valid copy of the data is in an addressable

memory
  Implies region pointer dereferences are always local

December 4, 2014 16
http://legion.stanford.edu

A Linked List

 Can also build trees, graphs, irregular meshes …

December 4, 2014 17
http://legion.stanford.edu

Pointers to Regions

December 4, 2014 18
http://legion.stanford.edu

Questions?

