
December 4, 2014 1
http://legion.stanford.edu

Mike Bauer

Advanced Legion Features

December 4, 2014 2
http://legion.stanford.edu

Managing Mapped Regions

 Runtime API is detailed
  Manage both logical and
physical regions
  Similar to managing
variables and registers
  Legion language doesn’t
have this problem

 Runtime injects unmap
and map operations to
avoid deadlocks

  Better for applications to
do this themselves
unmap_all_regions()

task parent(region R) {

unmap_all_regions()

launch child task : R

launch child task : R

}

Child
Task

Child
Task

Unmap R

Unmap R

Map R

Map R

December 4, 2014 3
http://legion.stanford.edu

Virtual Mappings

 Virtual mappings: don’t make an instance!
  Pass privileges only
  Create instances only where they are actually needed

 More detailed mapping information
  Slightly more expensive meta-analysis

Parent

Sibling
A

Sibling
B

C D

Copy
Copy

Copy
Copy

December 4, 2014 4
http://legion.stanford.edu

Tunable Variables

 What about variables that
depend on some aspect of
the machine?

  Circuit: how many pieces?

 Answer: tunable variables
  Defer decision to the
mapper at runtime
  Mapper picks based on
introspection of machine

get_tunable_value(…)
  Currently just integers
  Anything other types?

December 4, 2014 5
http://legion.stanford.edu

Relaxed Coherence Modes

 Default coherence mode is Exclusive
  Guarantees program order execution of tasks

  In some cases Exclusive is overly restrictive
  What if we just need serializability?
  What if we want to do our own fine-grained
synchronization?

 Solution: relaxed coherence modes

t1: Read-Write Exclusive r

t2: Read-Write Exclusive r

December 4, 2014 6
http://legion.stanford.edu

Atomic Coherence

 Guarantee serializable access to logical regions
  Runtime can re-order tasks

 Currently implemented using reservations
  Could also use transactional memory in the future

t1: Read-Write Exclusive r1, Read-Write Atomic r2

t2: Read-Write Atomic r2

t1

t2 t1

t2

December 4, 2014 7
http://legion.stanford.edu

Simultaneous Coherence
 Tasks can run concurrently even if both writing

  Tell Legion: Don’t worry, I’ve got this J
  Makes no guarantee of concurrent execution

 Ensure that all updates are observed by all tasks
 Application responsible for synchronization

  Reservations and phase barriers

t1: Read-Write Simultaneous r

t2: Read-Write Simultaneous r

t1

t2

t2

t1

t1 t2
t1

t2

Time
t2

t1

December 4, 2014 8
http://legion.stanford.edu

Stencil Computation

 Example: 1-D stencil
  Region of data
  Two fields: input, output
  5 point stencil

 Need 2 nearest
neighbors on each side
to compute stencil

Input Output

December 4, 2014 9
http://legion.stanford.edu

Implicit Ghost Cells

 Standard Legion way
  Multiple Partitions

  Owned cells
  Ghost cells

  Index Space Task Launch

 Legion computes
dependences

  Handles movement of
data and meta-data

Proc 0 Proc 1 Proc 2 Proc 3

… …

Top-Level
Task

Stencil
Task

December 4, 2014 10
http://legion.stanford.edu

Explicit Ghost Cells

 Have parallel running
tasks (SPMD) that
exchange data through
explicit ghost regions

 Tasks request privileges
on owned+ghost regions

  Owned cells
  Owned ghost cells
  Neighbor ghost cells

 Don’t these overlap?
  Yes!
  Simultaneous Coherence

Proc 0 Proc 1 Proc 2

All	
 Cells	

Ghost	
 Cells	

SPMD
Task

December 4, 2014 11
http://legion.stanford.edu

Phase Barriers
 Problem: Legion cannot
detect dependences
between different contexts

  How do we synchronize?
  Answer: phase barriers

 These are not MPI barriers

 Producer-consumer sync.
  Set of arrivals
  Set of waiters
  Both sets can be
dynamically computed
  Launchers have entries for
arriving and waiting

Proc 0 Proc 1 Proc 2

Region-to-Region Copies

December 4, 2014 12
http://legion.stanford.edu

Must Epoch Launches

 Problem: how do we guarantee that SPMD tasks can
synchronize with each other using phase barriers?

  Legion makes no guarantee about concurrent execution
  Answer: must epoch launches

 Must epoch launchers are meta-launchers
  Containers for normal launchers: single and index space
  Declarative way of saying tasks must all run concurrently

 Can use any coherence
  Legion checks for interference between tasks
  Reports errors if tasks cannot be run concurrently

December 4, 2014 13
http://legion.stanford.edu

Mapping Must Epoch Launches

 Must epoch launches place constraints on mappers
  Must map each task to a different processor
  All interfering regions with simultaneous coherence must
map to the same physical instance

 Separate mapper interface call
  virtual void map_must_epoch(…)
  Map all tasks at the same time
  Given set of simultaneous constraints to be satisfied
  Runtime checks that all tasks can run concurrently

  Otherwise mapping fails

December 4, 2014 14
http://legion.stanford.edu

Restricted Access
 Simultaneous restriction

  All writes need to be
immediately visible
  Runtime cannot freely
make copies
  Mark restricted field
on region requirements

 Can we map stencil task
on GPU? (not currently)

  Explicit ghost cell
regions mapped to CPU-
DRAM Memory
  Not visible on GPU

Node 1

CPU GPU DRAM FB

Copy from
another node

December 4, 2014 15
http://legion.stanford.edu

Acquire and Release Operations

 Acquire and release operations bound range of
program execution when it is safe to make copies

 Acquire: indicate that it is safe to make copies
  Application guarantees synchronization is handled
  Runtime removes all restrictions

 Release: indicate that copies are no longer allowed
  Runtime flushes all dirty data back to original instance
  Resumes enforcement of simultaneous restriction

 Apply to specific regions and fields
  Dependence analysis performed just like other operations

December 4, 2014 16
http://legion.stanford.edu

Putting It All Together
Node 0 Node 1

FB CPU DRAM FB CPU DRAM

O
w
n
e
d

i1

L
e
f
t

i4

O
w
n
e
d

i2

R
i
g
h
t

i3

Copy
i1 -> i3

Copy
i2 -> i4

Acquire
i4

Acquire
i3

Stencil Stencil

Release
i4

Release
i3

Copy
i1 -> i3

Copy
i2 -> i4

L
e
f
t

i5

R
i
g
h
t

i6

PB0 PB1

PB2 PB3

Ti
m

e

December 4, 2014 17
http://legion.stanford.edu

A Note on Complexity
  Isn’t this complex?

  Yes and No

 What do we have to do today to get the same effect?
  MPI calls to move data between nodes
  MPI synchronization
  CUDA allocation and data movement
  Not composable

 Legion approach is machine independent
  Simply specify coherence properties
  Where to use exclusive and simultaneous
  Where to perform acquires and releases
  Synchronization with phase barriers
  Can be composed hierarchicaly

December 4, 2014 18
http://legion.stanford.edu

S3D Example
 S3D is just a slightly more
complex example

  Lots of 1-D stencils
  Done in 3-D space

 Explicit ghost regions
  Fields for each stencil
  PRF: 464 stencil fields

 Per field ghost regions and
phase barriers

  8192 nodes: 4.5M barriers
  Lots of messages in flight
  Hide communication latency

December 4, 2014 19
http://legion.stanford.edu

Hierarchical Composition
 What is the best way to
write Legion programs?

  Both ways!
  Implicit approach first

  Easier to write
  See how far it scales
  Might be enough

 Explicit approach next
  Guarantees scalability

 Compose them
  Enabled by hierarchical
tasks and region trees
  Maps really well onto
dragonfly topologies

Top-Level
Task

Node Node

Node Node

SPMD
Task

Node Node

Node Node

SPMD
Task

Node Node

Node Node

SPMD
Task

Node Node

Node Node

SPMD
Task

December 4, 2014 20
http://legion.stanford.edu

Higher-Order Buffering

 Explicit ghost regions
can be generalized

  Double buffering
  Triple buffering
  …

 Arbitrary depth to hide
longer message latency

  Who knows how bad
exascale latency will be

 Code gets more complex
  Build libraries
  Have DSL compilers emit

