N
> I./ojsAIamos

NATIONAL LABORATORY

Advanced Legion Features

Mike Bauer

December 4, 2014 http://legion.stanford.edu

Managing Mapped Regions

¢ Runtime API is detailed

@ Manage both logical and
physical regions

@ Similar to managing
variables and registers

@ Legion language doesn’t
have this problem

@ Runtime injects unmap
and map operations to
avoid deadlocks

@ Better for applications to
do this themselves

¢ unmap all regions|()

December 4, 2014

task parent(region R) {

unmap_all_regions() - -

L’

launch child task : R

‘\
—
~~
—

——
-—
—
-

-

http://legion.stanford.edu

N
> L?s Alamos

NATIONAL LABORATORY

-+ UnmapR |
E Child
Task

"~ MepR |

-~ UnmapR |
E Child
Task

~ MapR |

Virtual Mappings

@ Virtual mappings: don’t make an instance!
@ Pass privileges only
@ Create instances only where they are actually needed

@ More detailed mapping information
@ Slightly more expensive meta-analysis

December 4, 2014

Parent

Sibling Sibling
A B
Copy
Copy Copy

C
c opy ! D

http://legion.stanford.edu

N
> I./ojsAIamos

NATIONAL LABORATORY

Y EST.1943
¥ ANVIDIA
= ®

AAAAAAAAAAAAAAAAAA

Tunable Variables -
— @2~ NVIDIA.

@ What about variables that
depend on some aspect of
the machine?

@ Circuit: how many pieces?

@ Answer: tunable variables

@ Defer decision to the
mapper at runtime

@ Mapper picks based on
introspection of machine

@ get tunable value(..)
@ Currently just integers
@ Anything other types?

December 4, 2014 http://legion.stanford.edu

N
> L?s Alamos

NATIONAL LABORATORY

Relaxed Coherence Modes

@ Default coherence mode is Exclusive
@ Guarantees program order execution of tasks

t,: Read-Write Exclusive r

t,: Read-Write Exclusive r

@ In some cases Exclusive is overly restrictive
@ What if we just need serializability?

@ What if we want to do our own fine-grained
synchronization?

@ Solution: relaxed coherence modes

December 4, 2014 http://legion.stanford.edu

/O
> I.?sAIamos

NATIONAL LABORATORY

Atomic Coherence

SANVIDIA.

@ Guarantee serializable access to logical regions
@ Runtime can re-order tasks

t,: Read-Write Exclusive r,, Read-Write Atomic r,
t,: Read-Write Atomic r, ‘ Q
@ Currently implemented using reservations

@ Could also use transactional memory in the future

December 4, 2014 http://legion.stanford.edu

N
> L?s Alamos

NATIONAL LABORATORY

Simultaneous Coherence

. NVIDIA.
@ Tasks can run concurrently even if both writing
@ Tell Legion: Don’t worry, I've got this ©
@ Makes no guarantee of concurrent execution

t,: Read-Write r

t,: Read-Write

HRolo
olo 50 5%

@ Ensure that all updates are observed by all tasks

@ Application responsible for synchronization
@ Reservations and phase barriers

v

December 4, 2014 http://legion.stanford.edu

N
> IEAIamos

NATIONAL LABORATORY

EST.1943
< NVIDIA
S L

Stencil Computation

@ Example: 1-D stencil
@ Region of data
@ Two fields: input, output
@ 5 point stencil

Input Output

@ Need 2 nearest
neighbors on each side
to compute stencil

December 4, 2014 http://legion.stanford.edu

Implicit Ghost Cells

@ Standard Legion way

@ Multiple Partitions
@ Owned cells
@ Ghost cells

@ Index Space Task Launch

@ Legion computes
dependences

@ Handles movement of
data and meta-data

Stencil
Task

Task

December 4, 2014

N

—)
» Los Alamos

NATIONAL LABORATORY

EST.1943
<ANVIDIA
N ®

Top-Level |

Proc O

Proc 2

Proc 3

- -

http://legion.stanford.edu

Explicit Ghost Cells

@ Have parallel running
tasks (SPMD) that
exchange data through
explicit ghost regions

@ Tasks request privileges
on owned+ghost regions

[Ghost Cells]

@ Owned cells SPMD |

@ Owned ghost cells| Task

@ Neighbor ghost cells

@ Don’t these overlap?

¢ Yes!
@ Simultaneous Coherence

December 4, 2014 http://legion.stanford.edu

Proc 0+

N
> IEAIamos

NATIONAL LABORATORY

EST.1943
N\
@2 NVIDIA.

All Cells]

Proc 2

10

Phase Barriers

@ Problem: Legion cannot
detect dependences

between different contexts

@ How do we synchronize?
@ Answer: phase barriers

@ These are not MPI barriers

@ Producer-consumer sync.

A

-~

v

December 4, 2014

Set of arrivals
Set of waiters

Both sets can be
dynamically computed

Launchers have entries for
arriving and waiting

/A
> IRAIamos

NATIONAL LABORATORY

—~. @A NVIDIA.

Region-to-Region Copies

1S

Proc O

Proc 2

http://legion.stanford.edu

1"

N
> L?s Alamos

NATIONAL LABORATORY

Must Epoch Launches e
<2 NVIDIA.

@ Problem: how do we guarantee that SPMD tasks can
synchronize with each other using phase barriers?

@ Legion makes no guarantee about concurrent execution
@ Answer: must epoch launches

@ Must epoch launchers are meta-launchers
@ Containers for normal launchers: single and index space
@ Declarative way of saying tasks must all run concurrently

@ Can use any coherence
@ Legion checks for interference between tasks
@ Reports errors if tasks cannot be run concurrently

12
December 4, 2014 http://legion.stanford.edu

N
> L?s Alamos

NATIONAL LABORATORY

Mapping Must Epoch Launches

@2 NVIDIA.

@ Must epoch launches place constraints on mappers
@ Must map each task to a different processor

@ All interfering regions with simultaneous coherence must
map to the same physical instance

@ Separate mapper interface call
¢ virtual void map must epoch(..)
@ Map all tasks at the same time
@ Given set of simultaneous constraints to be satisfied

@ Runtime checks that all tasks can run concurrently
@ Otherwise mapping fails

December 4, 2014 13

http://legion.stanford.edu

AAAAAAAAAAAAAAAA

Restricted Access
— @A NVIDIA

@ Simultaneous restriction

@ All writes need to be Node 1
immediately visible

@ Runtime cannot freely

make copies
@ Mark restricted field
on region requirements
Copy from |
another node
@ Can we map stencil task
on GPU? (not currently)
@ Explicit ghost cell

CPU | GPU | DRAM | FB

regions mapped to CPU-
DRAM Memory

@ Not visible on GPU

December 4, 2014 14

http://legion.stanford.edu

/)
> Lc’)z Alamos

AAAAAAAAAAAAAAAAAA

EST.1943
~ < NVIDIA

Acquire and Release Operations

@ Acquire and release operations bound range of
program execution when it is safe to make copies

@ Acquire: indicate that it is safe to make copies
@ Application guarantees synchronization is handled
@ Runtime removes all restrictions

@ Release: indicate that copies are no longer allowed
@ Runtime flushes all dirty data back to original instance
@ Resumes enforcement of simultaneous restriction

@ Apply to specific regions and fields
@ Dependence analysis performed just like other operations

15
December 4, 2014 http://legion.stanford.edu

Putting It All Together

» Los Alamos

NATIONAL LABORATORY

A NodeO
i FB CPU DRAM Copy PBO PB1 Copy
1 L

of Il FE

El i 5

- i t

v

i Copy Copy

December 4, 2014

CPU DRAM

http://legion.stanford.edu

5P SANVIDIA.

AAAAAAAAAAAAAAAAAA

EST.1943
. VIDI
< NVIDIA.

A Note on Complexity

@ Isn’t this complex?
@ Yes and No

@ What do we have to do today to get the same effect?
@ MPI calls to move data between nodes
@ MPI synchronization
@ CUDA allocation and data movement
@ Not composable

@ Legion approach is machine independent
@ Simply specify coherence properties
@ Where to use exclusive and simultaneous
@ Where to perform acquires and releases
@ Synchronization with phase barriers
@ Can be composed hierarchicaly

17
December 4, 2014 http://legion.stanford.edu

- Los Alamos

S3D Example

@ S3D is just a slightly more
complex example
@ Lots of 1-D stencils
@ Done in 3-D space

‘<A NVIDIA.

@ Explicit ghost regions
@ Fields for each stencil
@ PRF: 464 stencil fields

@ Per field ghost regions and
phase barriers
@ 8192 nodes: 4.5M barriers
@ Lots of messages in flight
@ Hide communication latency

18

December 4, 2014 http://legion.stanford.edu

N
> L?s Alamos

NATIONAL LABORATORY

Hierarchical Composition

@ What is the best way to
write Legion programs?
@ Both ways!
@ Implicit approach first T@PMDel SPMD
. . Task Task
@ Easier to write — -
@ See how far it scales Noﬁ(e/ ode Noég/

\

EST.1943
—.] NVIDIA
’ o

/Z?

ode

o Mi v N v N
Might be enough Node || Node Node || Node
@ Explicit approach next
@ Guarantees scalability SPMD SPMD
Task Task
@ Compose them — -

ode

/Z?

R~ -
@ Enabled by hierarchical Noég/ \ode Noég/
tasks and region trees ; ;

@ Maps really well onto
dragonfly topologies

\

i A\ W A\
Node || Node Node || Node

December 4, 2014 http://legion.stanford.edu ®

- Los Alamos

Higher-Order Buffering

@ Explicit ghost regions
can be generalized
@ Double buffering “

@ Triple buffering
>

@ Arbitrary depth to hide
longer message latency “

@ Who knows how bad
exascale latency will be

5 SANVIDIA
@ Code gets more complex
@ Build libraries

@ Have DSL compilers emit

20
December 4, 2014 http://legion.stanford.edu

