Demonstration of Legion Runtime
Using the PENNANT Mini-App

Charles Ferenbaugh
Los Alamos National Laboratory

LA-UR-14-29180

December 4, 2014 http://legion.stanford.edu

NATIONAL LABORATORY
EST.1943

@ANVIDIA.

Al

» Los Alamos

-
2
<
2
2
LLl
a
(TH
@)
S
2
-
)
>
@)
(T
Q
- -
o)
<

ics from the

@ Implements a small subset of basic phys
LANL rad-hydro code FLAG

@ Just enough to run a few standard test problems

[=] N
> Q@ 9 o <
2 9 O = o
2 S = 9 9
g - © o o
o©

.stanford.edu

:/llegion

http

|

zone density
7.500e+01
5.625e+01
3.750e+01
1.875e+01
0.000e+00

,
|

7,

N
Tl
t/ﬂﬂrI/ﬂWVWM/ﬁryﬂ/‘
L
T
L ww,

,.m_ L .
L

B
S

December 4, 2014

AAAAAAAAAAAAAAAAAA

@2 NVIDIA.

A brief overview of PENNANT (2)

@ Operates on general unstructured meshes in 2D
(arbitrary polygons, arbitrary connectivity)

@ This requires data structures, memory access patterns
that don’t occur in structured codes

@ Contains about 3300 lines of C++ source code
@ Compare to > 600K lines for FLAG

@ Has complete implementations for multicore CPUs
(MPI + OpenMP) and GPUs (CUDA)

@ Available open-source on GitHub

December 4, 2014 http://legion.stanford.edu

AAAAAAAAAAAAAAAAAA

EST.1943
—.] NVIDIA
’ »

PENNANT implementation in
Legion
@ Legion version of PENNANT is code-complete

@ Basic regression tests pass

@ Some larger tests don’t run yet

@ Still working on some bugs/unimplemented code paths in
the Legion runtime

@ Performance optimizations are in progress
@ Too early to show any performance numbers

December 4, 2014 http://legion.stanford.edu

AAAAAAAAAAAAAAAAAA

PENNANT implementation in
Legion (2)

@ There is a natural correspondence between:

@ MPI domain decomposition and Legion partitioning of
index spaces

@ C++ function calls and Legion tasks

This makes PENNANT conversion to Legion
straightforward (in principle)

December 4, 2014 http://legion.stanford.edu

PENNANT MPI parallelization

(similar to FLAG, and many other codes)

Geometric domain i
decomposition onto o>

MPI ranks rank 2 IR rank 3
Zones, sides, :

corners are private $ ------------ / --------- $
to each rank © 0 © ge o ©
Boundary points are nk0 O(_» rank 1

shared, duplicated
between ranks;

gather-sum-scatter ® = private, ® = master, ® = slave

implemented using ¢ = proxy (temporary, used for comms)
MPI runtime calls

O€>

December 4, 2014 http://legion.stanford.edu

Legion partitions and data

parallelism

Legion can partition data
into private, shared, and
ghost partitions

Legion can reason about
dependencies, run tasks in
parallel

PENNANT MPI model can
be expressed in this style

Explicit slaves, proxies no
longer needed

Legion runtime will handle
comms, data copies,
synchronization

all nodes

AAAAAAAAAAAAAAAAAA

SANVIDIA

Ip—— P00 VS

all-private
nodes

all-shared
nodes

p_ghost_nodes

p_pvt_nodes * p_shr_nodes ;*

pl oo IS | S0

December 4, 2014 http://legion.stanford.edu

circuit graph example from the
Legion SC12 paper

N
> IEAIamos

NATIONAL LABORATORY

Example: function call in
original

EST.1943
< NVIDIA
A\ S,
- ®
=

D4

// calculate zone density

// zm zone mass (input)
// zvol zone volume (input)
// zr zone density (output)

// zfirst, zlast range of zone indices to compute (input)
calcRho(zm, zvol, zr, zfirst, zlast);

December 4, 2014 http://legion.stanford.edu

/O
> I.?sAIamos

NATIONAL LABORATORY
EST.1943

SANVIDIA.

Example: function call in Legion

// create launcher for zone density task

IndexLauncher launchcr (TID _CALCRHO, dompc, ta, am);

// specify input fields over zones

launchcr.add_region_requirement (RegionRequirement (
lpz, O, READ ONLY, EXCLUSIVE, lrz));

launchcr.add_field(0, FID_ZM);

launchcr.add_field (0, FID_ZVOL);

// specify output field over zones

launchcr.add_region_requirement (RegionRequirement (
lpz, 0, WRITE DISCARD, EXCLUSIVE, lrz));

launchcr.add_field(1, FID_ZR);

// launch task

runtime->execute_index_space(ctx, launchcr);

December 4, 2014 http://legion.stanford.edu

AAAAAAAAAAAAAAAAAA

EST.1943
. VIDI
< NVIDIA.

Comments on Legion porting

@ The data model and function/task mapping made the
port easy, in principle
@ Much of the work was repetitive, tedious
@ Working out the details was sometimes complicated

@ PENNANT uncovered a number of bugs in the
Legion runtime

@ The unstructured data capability in Legion hadn’t been
exercised as much as structured

@ The process should be easier in the future
@ Abstractions, automation will help
@ Runtime will become more robust as it’s exercised more

10
December 4, 2014 http://legion.stanford.edu

AAAAAAAAAAAAAAAAAA

EST.1943
. VIDI
< NVIDIA.

Summary

@ A Legion version of PENNANT is working

@ Demonstrates that Legion can, in principle, support
hydrocodes and similar LANL applications

@ Data models and functions from current MPI codes
can map naturally into the Legion model

@ Legion can then expose additional parallelism, provide
new capabilities

@ Current version of Legion is mostly working, but
some aspects can be difficult to use
@ This should improve with time

1
December 4, 2014 http://legion.stanford.edu

N
> I./ojsAIamos

NATIONAL LABORATORY

Any questions?

EST.1943

cferenba@lanl.gov
github.com/LosAlamos/PENNANT

December 4, 2014 http://legion.stanford.edu "

N
° IEAIamos

NATIONAL LABORATORY

7. A NVIDIA.

Backup slides...

December 4, 2014 http://legion.stanford.edu h

PENNANT Legion parallelization
strategy

MPI decomposition piece 2 L o (Piece3
can be translated e 1
into private/shared/ piece 0 - piece 1
ghost model

No duplicated
points; slaves and
proxies not needed

Boundary points
visible to other
pieces as “ghosts”

Legion runtime

handles comms,
synchronization ® = private, ® = shared, ® = ghost

14
December 4, 2014 http://legion.stanford.edu

N
> IEAIamos

NATIONAL LABORATORY

Example: function body in

. < n;;:;JIA,
original

// calculate zone density, given zone mass and volume
void Hydro: :calcRho(

const double* zm,

const double* zvol,

double* zr,

const int zfirst,

const int zlast) {

#pragma ivdep
for (int z = zfirst; z < zlast; ++z) {
zr[z] = zm[z] / zvol[z];

}

December 4, 2014 http://legion.stanford.edu b

N
> L?s Alamos

NATIONAL LABORATORY
EST.1943

Example: function body in
Legion (1/ 2)

void Hydro::calcRhoTask(
const Task *task,
const std::vector<PhysicalRegion> ®ions,
Context ctx,
HighLevelRuntime *runtime) {

// get field id‘'s for fields to use

FieldID fid zm = task->regions[0].instance_ fields[O0];

FieldID fid zvol = task->regions[0].instance_ fields[1];

FieldID fid zr = task->regions[l].instance fields[O0];

// get accessors for fields

RegionAccessor<AccessorType: :Generic, double> acc_zm =
regions[0] .get field accessor(fid_zm).typeify<double>();

RegionAccessor<AccessorType: :Generic, double> acc_zvol =
regions[0] .get field accessor(fid_zvol).typeify<double>();

RegionAccessor<AccessorType: :Generic, double> acc_zr =
regions[l].get field accessor(fid_zr).typeify<double>();

16
December 4, 2014 http://legion.stanford.edu

/O
> I.?sAIamos

NATIONAL LABORATORY
EST.1943

SANVIDIA.

Example: function body in
Legion (2 / 2)

// loop over index space and compute densities
const IndexSpace& isz =
task->regions[0] .region.get_index_ space();
for (Domain::DomainPointIterator itrz(isz); itrz; itrz++)

{
ptr t z = itrz.p.get_index();
double m = acc_zm.read(z);
double v = acc_zvol.read(z);
double r = m / v;
acc_zr.write(z, r);

}

December 4, 2014 17

http://legion.stanford.edu

AAAAAAAAAAAAAAAAAA

What about task parallelism? s
ANVIDIA.

@ Legion model fully supports task parallelism
@ PENNANT has limited opportunities to use it

@ Single physics, single material
@ Explicit method, no iterative solvers
@ Load remains well-balanced through the run

@ FLAG, and other LANL codes, would be better suited
to exercising task parallelism

December 4, 2014 http://legion.stanford.edu b

