AAAAAAAAAAAAAAAAAA

85 Al EST.1943
)
|)
i SANVIDIA
\\— o

Legion Bootcamp:
Debugging & Profiling Tools

Wonchan Lee

December 4, 2014 http://legion.stanford.edu

AAAAAAAAAAAAAAAAAA

EST.1943
=@ NVIDIA
\— o

Debugging Tools:
Runtime Checks & LegionSpy

December 4, 2014 http://legion.stanford.edu

N
> I.?sAIamos

NATIONAL LABORATORY

Runtime Checks

<A NVIDIA.

@ Provide warning or error messages when the
application breaks runtime’s assumptions

December 4, 2014 http://legion.stanford.edu 3

N
> L?s Alamos

NATIONAL LABORATORY
EST.1943

Runtime Checks

1. Disjointness checks

@ Verify the disjointness of the index partitioning claimed to
be disjoint

IndexPartition (Context ctx, IndexSpace parent,
Coloring &coloring,

disjoint,
part_color

@ Enabled by passing the -hl:disjointness flag on the
command line

$./partitioning -hl:disjointness
Running daxpy for 1024 elements...
Partitioning data into 3 sub-regions...

[0 — 1] {ERROR}{runtime}: ERROR: colors @ and 1 of partition 1 are not disjoint when they

are claimed to be!
Assertion failed: (false), function create_index_partition, file /Users/wclee/Workspace/

stanford/projects/legion//runtime/runtime.cc, line 5348.

December 4, 2014 http://legion.stanford.edu

N
> L?s Alamos

NATIONAL LABORATORY

Runtime Checks

2. Privilege Checks

@ Dynamically verify if all memory accesses abide by the
privileges stated in task’s region requirements

@ Compensate lack of static checking from the compiler
(However, Legion language has a type system and a compiler.
See the next talk!)

December 4, 2014 http://legion.stanford.edu

N
> IEAIamos

NATIONAL LABORATORY
EST.1943

@ANVIDIA.

Runtime Checks

2. Privilege Checks

@ Enabled by compiling runtime source with the flag
—-DPRIVILEGE_CHECKS

¢ E.g.

TaskLauncher init_launcher(INIT_FIELD_TASK_ID, TaskArgument ());
init_launcher.add_region_requirement(

RegionRequirement (input_1lr, READ_ONLY ' EXCLUSIVE, input_1r));
init_launcher.add_field(0, FID_X); runtime->execute_task(ctx, init_launcher);

init_field_task(Task xtask, vector<PhysicalRegion> ®ions,
Context ctx, HighLevelRuntime *runtime)

RegionAccessor<AccessorType: :Generic, > acc =
regions[0].get_field_accessor(FID_X).typeify< >();

(GenericPointInRectIterator<l> pir(rect); pir; pir++)
acc.writeDomainPoint::from_point<l>(pir.p), drand48());

December 4, 2014 http://legion.stanford.edu 4

N
> Lc’)z Alamos

NATIONAL LABORATORY
EST.1943

NVIDIA.

Runtime Checks

2. Privilege Checks

@ Enabled by compiling runtime source with the flag
—-DPRIVILEGE_CHECKS

¢ E.g.

$./privileges

Running daxpy for 1024 elements...

Initializing field 0...

PRIVILEGE CHECK ERROR IN TASK init_field_task: Need WRITE-DISCARD privileges but only hold

READ-ONLY privileges
Assertion failed: (talse), tunction check_privileges, Tile /Users/wclee/Workspace/stantord/
projects/legion//runtime/accessor.h, line 160.

December 4, 2014 http://legion.stanford.edu 4

Runtime Checks

ya
AN
» Los Alamos

NATIONAL LABORATORY
EST.1943

NVIDIA.

3. Bounds Checks

™

v

December 4, 2014

Check if all memory accesses fall within the logical
region’s bounds

Enabled by compiling runtime source with the flag
—-DBOUNDS_CHECKS

E.g.

$./bounds

Running daxpy for 1024 elements...
Initializing field 0...
Initializing field 1...

Runnina_daxpv_computation with aloha 0.39646477...

BOUNDS CHECK ERROR IN TASK 3: Accessing invalid 1D point (1024)

Assertion tailed: (false), function check_bounds, tile /Users/wclee/Workspace/stanford/
projects/legion//runtime/runtime.cc, line 12368.

http://legion.stanford.edu 4

N
> L?s Alamos

NATIONAL LABORATORY

LegionSpy

@ Provides various visual aids for better program
understanding

@ Runtime inserts copies for data movement between tasks,
which are not entirely transparent to users

@ Helpful to detect the default mapper’s sub-optimal
decision
(will come to this point later with a simple example)

@ Also able to check logical and physical data flows
(mostly useful for runtime developers)

December 4, 2014 http://legion.stanford.edu >

Steps to Run LegionSpy

@ Compile a Legion application with the -DLEGION_SPY
flag added to the CC_FLAGS variable

@ Run the application with the following flags passed
on the command line: -cat legion_spy -level 2
@ The standard error output should be redirect to a file

@ Pass the resulting log file to legion_spy.py

December 4, 2014 http://legion.stanford.edu

Logical and Physical Analyses

@ Logical Analysis (with the -1 flag)

@ Compares dependencies computed by the runtime (mdep)
with all possible dependencies between operations (adep)

@ Warnings when mdep — adep # 0 (possibly due to runtime
optimizations)

@ Errors when adep — mdep # 0 (possible runtime bugs,
please report us!)

@ Physical Analysis (with the -c flag)

@ Checks if each logical dependence is substantiated by
actual data flow between physical instances

@ Reports missing data flows (also possible runtime bugs,
please report us!)

December 4, 2014 http://legion.stanford.edu

N
> IEAIamos

NATIONAL LABORATORY

Partitioning Graphs

EST.1943
<ANVIDIA
\ 2
N o

@ Generated by passing the -P flag to LegionSpy

@ Show index spaces and their partitions
@ Index partitions are in italics
@ Label * on edges means the index partition is disjoint

subspace 0x2 (color: 0)

_—

® _ disjoint_ip (ID: Ox]) — subspace 0x3 (color: 1)
S
is (ID: 0x1)

ghost_ip (ID: 0x2) ——® subspace 0x4 (color: 0)

\

subspace 0x5 (color: 1)

December 4, 2014 http://legion.stanford.edu 8

N
> I.?sAIamos

NATIONAL LABORATORY

EST.1943

A NVIDIA.

Partitioning Graphs (cont’d)

@ Also show logical regions and their partitions
@ Logical partitions are in italics
@ Label * on edges means the logical partition is disjoint

@ Each region/partition is specified by index space id, field
space id, and tree id

subregion (index: 0x2,field: 1,tree: 1)

"

@' disjoint_Ip (part: Oxl field: 1,tree: 1) — subregion (index: 0x3,field: 1,tree: 1)

stencil_Ir (index: Ox1,field: 1,tree: 1)

ghost_Ip (part: Ox2 field: 1,tree: 1) ——® subregion (index: 0x4,field: 1,tree: 1)

\

subregion (index: 0x5,field: 1,tree: 1)

December 4, 2014 http://legion.stanford.edu ’

» Los Alamos
NATIONAL LABORATORY
EST.1943

7. A NVIDIA.

Event Graphs

@ Generated by the -p flag

@ Visualize operations and their dependences
@ Each box represents an operation

V4 - 7 \
v Copy 1 v Copy 3
_p| Inst: 0x1@0x1 ==>0x3@0x1 _p| Inst: 0x4@0x1 ==> 0x6@0x1
Field: {0} ==> {0} Field: {1} ==> {1}
Req: {index:0x2 field:0x1 tree:1} Req: {index:0x2 field:0x1 tree:1}
. . :E check_task
Unique ID 5
v Copy 2 v Copy 4 2
_p| Inst: 0x2@0x1 ==>0x3@0x1 _p| Inst: 0x5@0x1 ==> 0x6@0x1
Field: {0} ==> {0} Field: {1} ==> {1}
Req: {index:0x3 field:0x1 tree:1} Req: {index:0x3 field:0x1 tree:1}

\

instances of index space tasks

instances of single tasks

copy operations (runtime task)

December 4, 2014 http://legion.stanford.edu 10

» Los Alamos
NATIONAL LABORATORY
EST.1943

@ANVIDIA.

Event Graphs

@ Generated by the -p flag

@ Visualize operations and their dependences
@ Each box represents an operation

,/

Copy 1
Inst: 0x1@0x1 ==>0x3@0x1
Field: {0} ==> {0}
Req: {index:0x2,field:0x1 tree:1}
Field: {1} ==> {1}

Copy 2
Inst: 0x2@0x1 ==> 0x3@0x1
Field: {0} ==> {0}
Req: {index:0x3 field:0x1 tree:1} Req: {index:0x3 field:0x1 tree:1}

Copy 3

Inst: 0x4@0x1 ==> 0x6@0x1
Field: {1} ==> {1}

Req: {index:0x2 field:0x1 tree:1}

check_task
Unique ID 5§

\

Copy 4
Inst: 0x5@0x1 ==> 0x6@0x1

Release 31
Inst: Ox1
Fields: 2
{index:0x4 field:0x1 tree:1}
(ghost_Ir_0_L)

user-triggered acquire operations release operations
copy operations

December 4, 2014 http://legion.stanford.edu 10

/A
° IRAIamos

NATIONAL LABORATORY

EST.1943

. @A NVIDIA.

Event Graphs

@ Generated by the -p flag

@ Visualize operations and their dependences
@ Each box represents an operation
@ Each edge corresponds to explicit dependence between
Inst: Oxl@Oxlp);=> 0x3@0x1

two operations —
Field: {0} ==> {0}

-_. Req: {index:0x2 field:0x1 tree:1}

Copy 1 Copy 3
Inst: 0x4@0x1 ==> 0x6@0x1
Field: {1} ==> {1}

Req: {index:0x2 field:0x1 tree:1}

check_task
Unique ID 5§

\

Copy 2
Inst: 0x2@0x1 ==> 0x3@0x1 Inst: 0x5@0x1 ==> 0x6@0x1
Field: {0} ==>{0} Field: {1} ==> {1}
Req: {index:0x3 field:0x1 tree:1} Req: {index:0x3 field:0x1 tree:1}

\

Copy 4

December 4, 2014 http://legion.stanford.edu 10

» Los Alamos

NATIONAL LABORATORY

Event Graphs (cont’d)

5P SANVIDIA.

@ Passing the -v flag makes the graph also show

@ Alist of accessed physical instances with the access

privilege and coherence mode
Privileges Coherence

RO: Read-Only E: Exclusive
WO: Write-Only S: Simultaneous
RW: Read-Write A: Atomic

Red: Reduction R: Relaxed

N

@ Connections between parent tasks and their child operations

top_level task | .
Unique ID 1

December 4, 2014 http://legion.stanford.edu "

/A
° IRAIamos

NATIONAL LABORATORY

@ANVIDIA.

Instance Graphs (experimental)

@ Generated by the -i flag (add -v for a verbose graph)

@ Provide an instance-centric view of operations

@ Boxes are tasks and ovals are
physical instances

@ Solid edges connect tasks with the
physical instances they access

@ Dashed edges correspond to copy
operations

ROE

\ I
\ copy 0x4 (fields: 1) copy 0x3 (fields: 1)

R stencil_Ir
0x6@0x1
R OE /

check_task (UID: 5)

December 4, 2014 http://legion.stanford.edu 12

A
° Ifc?sAIamos

NATIONAL LABORATORY
EST.1943

@ANVIDIA.

More about Debugging

@ Please visit http://legion.stanford.edu/debugging

ece Debugging - Legion Progr X

(& legion.stanford.edu/debugging/ Q5

LEGION PROGRAMMING SYSTEM OVERVIEW GETTINGSTARTED ~ TUTORIALS ~ DOCUMENTATION PUBLICATIONS DISCUSSION N\ FEED

Debugging

All programming systems require support for debugging and Legion is no exception. One
of the benefits of the Legion programming model is that it provides additional
information to the Legion runtime as well as to our tools that make it easier to debug

/ applications. The following sections describe the current mechanisms available for
- Los Alamos ppications. = wing

NATIONAL LABORATORY debugging Legion applications.

EST.1943

Most of the mechanisms and techniques that we present here are targeted directly at

Leglon finding bugs within Legion applications. However, since Legion is still an experimental

A Data-Centric Parallel system, some of the tools available are actually designed to discover bugs within the

Programming System Legion runtime itself. In each section we explicitly specify the intended purpose of each
tool or technique. Below is a quick list of topics covered on this page:

@ Github

¢ Debug Compilation

¢ Disjointness Checks

e Privilege Checks

¢ Bounds Checks

¢ In-Order Execution

¢ Full-Size Instances

¢ Debug Tasks

¢ Logging Infrastructure
e Legion Spy

e Separate Runtime Instances
¢ Region Tree State Logs

December 4, 2014 http://legion.stanford.edu 13

Profiling Tool: LegionProf

December 4, 2014 http://legion.stanford.edu

AAAAAAAAAAAAAAAAAA

EST.1943
/\
— @ NVIDIA
N ®

Steps to Run LegionProf

@ Compile a Legion application with -DLEGION_PROF
added to the CC_FLAGS variable

@ Run the application with the following flags passed
on the command line: —-cat legion_prof -level 2

@ The standard error output should be redirected to a file

@ You can also pass -hl:prof <int> to specify a node to get
the profile result

@ Pass the resulting log file to legion_prof.py

December 4, 2014 http://legion.stanford.edu 15

A
° IEAIamos

NATIONAL LABORATORY

Timeline Output

@ANVIDIA.

@ Generated by passing the -p flag to LegionProf

@ Shows which tasks ran on which processors at what
time and for how long

il [U]

CPU Processor 0x1

I [[

CPU Processor 0x2

I | []

CPU Processor 0x3

CPU Processor 0x4

I ii.l.l.l ||.|.|.|..J. ' m

CPU Processor 0x5 (Utility)

b

December 4, 2014 http.Illeglon.stanford.edu 18

/A
° IEAIamos

NATIONAL LABORATORY

Timeline Output

@ANVIDIA.

@ Generated by passing the -p flag to LegionProf

@ Shows which tasks ran on which processors at what
time and for how long
@ Task id and timestamps appear when hovering a bar

CPU Processor 0x1 Execution of Task ID 1 1 (UID 13) Point (0)
Start: 2680 us Stop: 2904 us Total: 224 us
CPU Processor 0x2
CPU Processor 0x3
CPU Processor 0x4
CPU Processor 0x5 (U
|
Ous 5000 us 5000 us 5000 us

December 4, 2014 http.Illeglon.stanford.edu 18

N
° IEAIamos

NATIONAL LABORATORY

Timeline Output

@ANVIDIA.

@ Generated by passing the -p flag to LegionProf

@ Shows which tasks ran on which processors at what
time and for how long

@ The last few lines are for utility processors where runtime
tasks run

L1 i U]

CPU Pro

I [[

CPU Processor 0x2

I | []

CPU Processor 0x3

CPU Processor 0x4

- -I‘.I.I.l ||.|.|.|..J. ' m

CPU Processor 0x5 (Utility)

b

December 4, 2014 http.Illeglon.stanford.edu 18

Runtime Statistics

A

AN
» Los Alamos

NATIONAL LABORATORY

EST.1943

@ Additionally LegionProf prints out the statistics of
@ How long each processor was active

sokskskokskokkskskskkskokskokokskokskokskskskkkskskkokkskokskokskskkokkskskokokkokokokkok

PROCESSOR STATS
sokskskokskokkskskokkskoksrokkokskokskokskskkokkskskokokskokskokskokskskkkokskskokokskokskokkok
CPU Processor 0x1

Total time: 11388 us

Active time: 2078 us (18.247%)

Application time: 1932 us (16.965%)

Meta time: 146 us (1.282%)

@ How many instances were created on each memory

skokskokokokskokskskskskskskskskskskskskskskskskskokkkskkskskskskskskskskskok sk ok ok ok okokokokokokokok
MEMORY STATS
skokokokokskokokskskskskskskskskskskskskskokokokokkkksksk sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok okokokokokokok
Memory 0x1
Total Instances: 2
Memory 0x2
Total Instances: 5

@ How often a task was invoked and how long it was running

Task ID 2 2 4532 us (7.959%)
Executions (APP):

Total Invocations: 4
Cummulative Time: 1160 us (2.037%)

Non-Cummulative Time: 1160 us (2.037%)
Average Cum Time: 290.000 us
Average Non-Cum Time: 290.000 us

Meta Execution Time (META):
Cummulative Time: 5315 us (9.334%)
Non-Cummulative Time: 3372 us (5.922%)

December 4, 2014

http://legion.stanford.edu 17

NVIDIA.

N
> L?s Alamos

NATIONAL LABORATORY

Performance Tuning

@ Configuring runtime parameters

@ Writing a custom mapper

@ Point of mapping interface is to decouple the program
correctness from the performance

@ Changing the actual application code

December 4, 2014 http://legion.stanford.edu 18

A
° Ifc?sAIamos

NATIONAL LABORATORY
EST.1943

@ANVIDIA.

More about Profiling and Tuning

@ Please visit http://legion.stanford.edu/profiling

Performance Profiling anc %

€« (¢ legion.stanford.edu/profiling/ Q 5

LEGION PROGRAMMING SYSTEM OVERVIEW GETTINGSTARTED TUTORIALS ~ DOCUMENTATION PUBLICATIONS DISCUSSION N\ FEED

Performance Profiling and Tuning

After developing a functional Legion application, it is usually necessary to performance
profile and tune the application for high performance. This page covers many of the
techniques required for achieving high performance for Legion applications. Below is a
list of topics covered on this page.

- Los Alamos
NATIONAL LABORATORY

¢ High Performance Low-Level Runtime

Legion ¢ Configuring GASNet for Performance
A ¢ GASNet Performance Environment Variables
A Data-Centric Parallel « Legion Machine Configuration

P ing Syst . .
rogramming oystem ¢ High-Level Runtime Performance Flags

¢ Legion Prof

@ Github . L .
¢ Legion Optimization Techniques

High Performance Low-Level Runtime

All Legion applications which are going to be run for performance should use the general
low-level runtime which is capable of running on large clusters. This version of our low-
level runtime is the only one that has been tuned for performance. The shared-memory-
only version of the low-level runtime has not been performance tuned and therefore
should never be used for performance experiments. When using our normal Legion
Makefiles, the general low-level runtime is selected by setting the Makefile variable
SHARED_LOWLEVEL=0 . When using the general low-level runtime, users should also modify

December 4, 2014 http://legion.stanford.edu 19

AAAAAAAAAAAAAAAAAA

EST.1943
— @ NVIDIA
\— ®

Performance Tuning Example:
Eliminating unnecessary copies

December 4, 2014 http://legion.stanford.edu

N
> IEAIamos

NATIONAL LABORATORY

EST.1943
)
~ ®

Profiling DAXPY Application

@ DAXPY: Double precision A times X Plus Y
[T]]

CPU Processor 0x1

[TT 1]

CPU Processor 0x2

[TT]

CPU Processor 0x3

[TT]

CPU Processor 0x4

IW

CPU Processor 0x5 (Utility)

Ib us l80000 us =160000 us =240000 us {320000 us }400000 us =480000 us
- initializes Xand Y
- calculates AXPY
check_task: verifies the calculation result

December 4, 2014 http://legion.stanford.edu 21

N
> [c?sAIamos

NATIONAL LABORATORY

Profiling DAXPY Application

<X n;;:;JIA,
@ DAXPY: Double precision A times X Plus Y
ED: Large gap (454ms) between two tasks T —
|

: initializes Xand Y
: calculates AXPY
check_task: verifies the calculation result

December 4, 2014 http://legion.stanford.edu 21

» Los Alamos
NATIONAL LABORATORY
EST.1943

@ANVIDIA.

Detecting Unnecessary Copies
from Event Graph

Copy 1
Inst: 0x1@0x2 ==>0x7@0x1
Field: {0} ==> {0}
Req: {index:0x2 field:0x1 tree:1}
(input_Ir_0)
Copy 7
o Inst: (1)2:571?0{1(01} => 0{:31}@0)&2
ield: => -
Inst: 0x2@0xgpy ==>0x7@0x1 Req: {index:0x1 field:0x1 tree:1})\
Field: {0} ==> {0} (input_lIr)
Req: {index:0x3 field:0x1 tree:1} -t
(input_lIr_1) -—
Inst: 0x5@0x2 ==> 0x9@0x1
Field: {2} ==> {2}
Req: {index:0x2,{;i;::d:0x2,tme:2}
output_lr_0
— S L
Copy 6 Field: (2} => (2} Unique 1D’
Inst: 0x6@0x3 ==> 0x9@0x1 Req: {index:0x1 field:0x2 tree:2}
Field: {2} ==> {2} (output_Ir)
Req: {index:0x3 field:0x2 tree:2}
Copy 3
Inst: 0x3@0x2 ==>0x8@0x1
Field: {1} ==>{1} Copy 8
Req: {index:0x2 field:0x1 tree:1} Inst: 0x8@0x1 ==> 0xb@0x2
(input_Ir_0) Field: {1} ==> {1}
Req: {index:0x1 field:0x1 tree:1}
(input_lr)
Copy 4
Inst: 0x4@0x3 ==>0x8@0x1

Field: {1} ==> {1}
Req: {index:0x3 field:0x1 tree:1}
(input_Ir_1)

Copy operation 7, 8, and 9 are unnecessarily
making local copies to memory 0x2

December 4, 2014 http://legion.stanford.edu 22

» Los Alamos

NATIONAL LABORATORY
EST.1943

@ANVIDIA.

Instance Graph of DAXPY

WOE OE

OE

OE

input_Ir_1

input_Ir_0 input_Ir_1
0x4@0x3 0x3@0x2

0x2@0x3

input_Ir_0
Ox1@0x2

’

s
\ '
:copy 0x4 (fields: 1) \ROE , # ::opy 0x3 (fields: 1) ROE _/ROE * copy 0x2 (fields: 0) “ROE rcopy Ox1 (fields: 0)
AN ~ ’

~ s’
-~ -
Sea input_Ir input_Ir
0x8@0x1 0x7@0x1

A}
vcopy 0x8 (fields: 1) [WOE
A}

ogxt%ucf’_()lisl) ,'copy 0x7 (fields: 0)
\

1
1 1 :
: !)
oress S \copy Ox6 (felds: 2) s copy 0xS (felds: 2) 1

. 4
4

1
. ')
‘ k local instances for
0x9@0x1 1
I

the check_task
1
ROE 'copy 0x9 (fields: 2)
1

instances that merge
results from index space tasks

output_Ir
Oxc@0x2 -

ROE

check_task (UID: 6)

December 4, 2014 http://legion.stanford.edu 23

N
> I./ojsAIamos

NATIONAL LABORATORY

Example Mapper for Avoiding
Unnecessary Copies

@ Make the check task use directly the instances on
memory 0x1 (Memory: : SYSTEM_MEM)

DAXPYMapper: :map_task(Task xtask)

(task—>task_id ==) {
set<Memory> &vis_mems =
machine->get_visible_memories(task—>target_proc);
(idx = 0; idx < task—->regions.size(); idx++) {

(set<Memory>::iterator it = vis_mems.begin();
it '= vis mems.end(); ++it) {
(machine—>get_memory_kind(xit) == Memory::SYSTEM_MEM)
{
task—>regions[idx].target_ranking.push_back(xit);

’

December 4, 2014 http://legion.stanford.edu 24

» Los Alamos
NATIONAL LABORATORY
EST.1943

@ANVIDIA.

Changes in Event Graph

@ Copy operation 7, 8, and 9 disappeared

Copy 1
Inst: 0x1@0x2 ==>0x7@0x1
Field: {0} ==> {0}
Req: {index:0x2 field:0x1 tree:1}
(input_Ir_0)

Copy 5
Inst: 0x5@0x2 ==>0x9@0x1
Field: {2} ==> {2}
Req: {index:0x2 field:0x2 tree:2}
(output_Ir_0)

Copy 3
Inst: 0x3@0x2 ==>0x8@0x1
Field: {1} ==> {1}
Req: {index:0x2 field:0x1 tree:1}
(input_Ir_0)

!

Copy 2
Inst: 0x2@0x3 ==> 0x7@0x1
Field: {0} ==> {0}
Req: {index:0x3 field:0x1 tree:1}
(input_Ir_1)

Copy 6
Inst: 0x6@0x3 ==>0x9@0x1
Field: {2} ==> {2}
Req: {index:0x3 field:0x2 tree:2}
(output_Ir_1)

Copy 4
Inst: 0x4@0x3 ==> 0x8@0x1
Field: {1} ==> {1}
Req: {index:0x3 field:0x1 tree:1}
(input_Ir_1)

December 4, 2014 http://legion.stanford.edu 25

» Los Alamos

NATIONAL LABORATORY

5P SANVIDIA.

Changes in Instance Graph

@ We can verify that the check task is using directly
the instances on the memory 0x1

OE OE OE OE

input_Ir_1 input_Ir_0 input_Ir_1 input_Ir_0

0x4@0x3 0x3@0x2 0x2@0x3 0x1@0x2
4

’
(copy 0x4 (fields: 1) ROE’ ’ f:opy 0x3 (fields: 1) ROE
~

S e
S~

\

1
ROE g(:py 0x2 (fields: 0) R OE':copy 0x1 (fields: 0)

~ -

input_Ir
0x8@0x1

OE

output_Ir_1 output_Ir_0
0x6@0x3 0x5@0x2

1 ’
ROE \copy 0x6 (fields: 22'copy 0x5 (fields: 2) /R
A Y
’

~

check_task (UID: 6)

December 4, 2014 http://legion.stanford.edu 26

Changes in Timeline

» Los Alamos

NATIONAL LABORATORY

5P SANVIDIA.

Gap reduced to 247ms

. <

CPU Processor 0x1

CPU Processor 0x2

CPU Processor 0x3

CPU Processor 0x4

Y

CPU Processor 0x5 (Utility)

0 us =80000 us

December 4, 2014

L 1
'160000 us 240000 us

http://legion.stanford.edu 27

N
° IEAIamos

NATIONAL LABORATORY

@ANVIDIA.

Questions?

December 4, 2014 http://legion.stanford.edu

