
December 4, 2014 http://legion.stanford.edu

Wonchan Lee

Legion Bootcamp:
Debugging & Profiling Tools

December 4, 2014 http://legion.stanford.edu

Debugging Tools:
Runtime Checks & LegionSpy

December 4, 2014 http://legion.stanford.edu

Runtime Checks

 Provide warning or error messages when the
application breaks runtime’s assumptions

3

December 4, 2014 http://legion.stanford.edu

Runtime Checks

 Provide warning or error messages when the
application breaks runtime’s assumptions

1.  Disjointness checks
  Verify the disjointness of the index partitioning claimed to
be disjoint

  Enabled by passing the -hl:disjointness flag on the
command line

2.  Privilege Checks
3.  Bounds checks

4

IndexPartition create_index_partition(Context ctx, IndexSpace parent, !
 const Coloring &coloring, !
 bool disjoint, !
 int part_color = -1); !

$./partitioning -hl:disjointness!
Running daxpy for 1024 elements... !
Partitioning data into 3 sub-regions... !
[0 - 1] {ERROR}{runtime}: ERROR: colors 0 and 1 of partition 1 are not disjoint when they
are claimed to be! !
Assertion failed: (false), function create_index_partition, file /Users/wclee/Workspace/
stanford/projects/legion//runtime/runtime.cc, line 5348. !

December 4, 2014 http://legion.stanford.edu

Runtime Checks

 Provide warning or error messages when the
application breaks runtime’s assumptions

1.  Disjointness checks

2.  Privilege Checks
  Dynamically verify if all memory accesses abide by the
privileges stated in task’s region requirements
  Compensate lack of static checking from the compiler

(However, Legion language has a type system and a compiler.
 See the next talk!)

3.  Bounds checks
4

December 4, 2014 http://legion.stanford.edu

Runtime Checks

 Provide warning or error messages when the
application breaks runtime’s assumptions

1.  Disjointness checks

2.  Privilege Checks
  Enabled by compiling runtime source with the flag
-DPRIVILEGE_CHECKS
  E.g.

3.  Bounds checks
4

TaskLauncher init_launcher(INIT_FIELD_TASK_ID, TaskArgument(NULL, 0));!
init_launcher.add_region_requirement(!
 RegionRequirement(input_lr, READ_ONLY, EXCLUSIVE, input_lr));!
init_launcher.add_field(0, FID_X); runtime->execute_task(ctx, init_launcher); !
!
void init_field_task(const Task *task, const vector<PhysicalRegion> ®ions,!
 Context ctx, HighLevelRuntime *runtime)!
{ !
 ...!
 RegionAccessor<AccessorType::Generic, double> acc = !
 regions[0].get_field_accessor(FID_X).typeify<double>();!
!
 for (GenericPointInRectIterator<1> pir(rect); pir; pir++)!
 acc.write(DomainPoint::from_point<1>(pir.p), drand48());!

December 4, 2014 http://legion.stanford.edu

Runtime Checks

 Provide warning or error messages when the
application breaks runtime’s assumptions

1.  Disjointness checks

2.  Privilege Checks
  Enabled by compiling runtime source with the flag
-DPRIVILEGE_CHECKS
  E.g.

3.  Bounds checks
4

$./privileges !
Running daxpy for 1024 elements... !
Initializing field 0... !
PRIVILEGE CHECK ERROR IN TASK init_field_task: Need WRITE-DISCARD privileges but only hold
READ-ONLY privileges !
Assertion failed: (false), function check_privileges, file /Users/wclee/Workspace/stanford/
projects/legion//runtime/accessor.h, line 160. !

December 4, 2014 http://legion.stanford.edu

Runtime Checks

 Provide warning or error messages when the
application breaks runtime’s assumptions

1.  Disjointness checks
2.  Privilege checks

3.  Bounds Checks
  Check if all memory accesses fall within the logical
region’s bounds
  Enabled by compiling runtime source with the flag
-DBOUNDS_CHECKS
  E.g.

4

$./bounds !
Running daxpy for 1024 elements... !
Initializing field 0... !
Initializing field 1... !
Running daxpy computation with alpha 0.39646477... !
BOUNDS CHECK ERROR IN TASK 3: Accessing invalid 1D point (1024) !
Assertion failed: (false), function check_bounds, file /Users/wclee/Workspace/stanford/
projects/legion//runtime/runtime.cc, line 12368. !

December 4, 2014 http://legion.stanford.edu

LegionSpy

 Provides various visual aids for better program
understanding

  Runtime inserts copies for data movement between tasks,
which are not entirely transparent to users
  Helpful to detect the default mapper’s sub-optimal
decision
(will come to this point later with a simple example)

 Also able to check logical and physical data flows
(mostly useful for runtime developers)

5

December 4, 2014 http://legion.stanford.edu

Steps to Run LegionSpy

 Compile a Legion application with the -DLEGION_SPY
flag added to the CC_FLAGS variable

 Run the application with the following flags passed
on the command line: -cat legion_spy -level 2 !

  The standard error output should be redirect to a file

 Pass the resulting log file to legion_spy.py!

6

December 4, 2014 http://legion.stanford.edu

Logical and Physical Analyses

 Logical Analysis (with the -l flag)
  Compares dependencies computed by the runtime (mdep)
with all possible dependencies between operations (adep)
  Warnings when mdep – adep ≠ 0 (possibly due to runtime
optimizations)
  Errors when adep – mdep ≠ 0 (possible runtime bugs,
please report us!)

 Physical Analysis (with the -c flag)
  Checks if each logical dependence is substantiated by
actual data flow between physical instances
  Reports missing data flows (also possible runtime bugs,
please report us!)

7

December 4, 2014 http://legion.stanford.edu

Partitioning Graphs

 Generated by passing the -P flag to LegionSpy
 Show index spaces and their partitions

  Index partitions are in italics
  Label * on edges means the index partition is disjoint

8

December 4, 2014 http://legion.stanford.edu

Partitioning Graphs (cont’d)

 Also show logical regions and their partitions
  Logical partitions are in italics
  Label * on edges means the logical partition is disjoint
  Each region/partition is specified by index space id, field
space id, and tree id

9

December 4, 2014 http://legion.stanford.edu

Event Graphs

 Generated by the -p flag
 Visualize operations and their dependences

  Each box represents an operation

10

instances of index space tasks
instances of single tasks

copy operations (runtime task)

December 4, 2014 http://legion.stanford.edu

Event Graphs

 Generated by the -p flag
 Visualize operations and their dependences

  Each box represents an operation

10

user-triggered
copy operations

acquire operations release operations

December 4, 2014 http://legion.stanford.edu

Event Graphs

 Generated by the -p flag
 Visualize operations and their dependences

  Each box represents an operation
  Each edge corresponds to explicit dependence between
two operations

10

December 4, 2014 http://legion.stanford.edu

Event Graphs (cont’d)

 Passing the -v flag makes the graph also show

11

  A list of accessed physical instances with the access
privilege and coherence mode

  Connections between parent tasks and their child operations

RO: Read-Only
WO: Write-Only
RW: Read-Write
Red: Reduction

E: Exclusive
S: Simultaneous
A: Atomic
R: Relaxed

Privileges Coherence

December 4, 2014 http://legion.stanford.edu

Instance Graphs (experimental)

 Generated by the -i flag (add -v for a verbose graph)
 Provide an instance-centric view of operations

12

  Boxes are tasks and ovals are
physical instances
  Solid edges connect tasks with the
physical instances they access
  Dashed edges correspond to copy
operations

December 4, 2014 http://legion.stanford.edu

More about Debugging

 Please visit http://legion.stanford.edu/debugging

13

December 4, 2014 http://legion.stanford.edu

Profiling Tool: LegionProf

December 4, 2014 http://legion.stanford.edu

Steps to Run LegionProf

 Compile a Legion application with -DLEGION_PROF
added to the CC_FLAGS variable

 Run the application with the following flags passed
on the command line: -cat legion_prof -level 2 !

  The standard error output should be redirected to a file
  You can also pass -hl:prof <int> to specify a node to get
the profile result

 Pass the resulting log file to legion_prof.py!

15

December 4, 2014 http://legion.stanford.edu

Timeline Output

 Generated by passing the -p flag to LegionProf
 Shows which tasks ran on which processors at what
time and for how long

16

December 4, 2014 http://legion.stanford.edu

Timeline Output

 Generated by passing the -p flag to LegionProf
 Shows which tasks ran on which processors at what
time and for how long

  Task id and timestamps appear when hovering a bar

16

December 4, 2014 http://legion.stanford.edu

Timeline Output

 Generated by passing the -p flag to LegionProf
 Shows which tasks ran on which processors at what
time and for how long

  The last few lines are for utility processors where runtime
tasks run

16

December 4, 2014 http://legion.stanford.edu

Runtime Statistics
 Additionally LegionProf prints out the statistics of

  How long each processor was active

  How many instances were created on each memory

  How often a task was invoked and how long it was running

17

** !
 PROCESSOR STATS !
** !
CPU Processor 0x1 !
 Total time: 11388 us !
 Active time: 2078 us (18.247%) !
 Application time: 1932 us (16.965%) !
 Meta time: 146 us (1.282%) !

** !
 MEMORY STATS !
** !
Memory 0x1 !
 Total Instances: 2 !
Memory 0x2 !
 Total Instances: 5 !

 ------------------------- !
 Task Statistics !
 ------------------------- !
 Task ID 2 2 4532 us (7.959%) !
 Executions (APP): !
 Total Invocations: 4 !
 Cummulative Time: 1160 us (2.037%) !
 Non-Cummulative Time: 1160 us (2.037%) !
 Average Cum Time: 290.000 us !
 Average Non-Cum Time: 290.000 us !
 Meta Execution Time (META): !
 Cummulative Time: 5315 us (9.334%) !
 Non-Cummulative Time: 3372 us (5.922%)!

December 4, 2014 http://legion.stanford.edu

Performance Tuning

 Configuring runtime parameters

 Writing a custom mapper
  Point of mapping interface is to decouple the program
correctness from the performance

 Changing the actual application code

18

December 4, 2014 http://legion.stanford.edu

More about Profiling and Tuning

 Please visit http://legion.stanford.edu/profiling

19

December 4, 2014 http://legion.stanford.edu

Performance Tuning Example:
Eliminating unnecessary copies

December 4, 2014 http://legion.stanford.edu

Profiling DAXPY Application

 DAXPY: Double precision A times X Plus Y

init_field task: initializes X and Y
daxpy task: calculates AXPY
check_task: verifies the calculation result

21

December 4, 2014 http://legion.stanford.edu

Profiling DAXPY Application

 DAXPY: Double precision A times X Plus Y

init_field task: initializes X and Y
daxpy task: calculates AXPY
check_task: verifies the calculation result

Large gap (454ms) between two tasks

21

December 4, 2014 http://legion.stanford.edu

Detecting Unnecessary Copies
from Event Graph

22

Copy operation 7, 8, and 9 are unnecessarily
making local copies to memory 0x2

December 4, 2014 http://legion.stanford.edu

Instance Graph of DAXPY

23

instances that merge
results from index space tasks

local instances for
the check_task

December 4, 2014 http://legion.stanford.edu

Example Mapper for Avoiding
Unnecessary Copies
 Make the check_task use directly the instances on
memory 0x1 (Memory::SYSTEM_MEM)

24

bool DAXPYMapper::map_task(Task *task)!
{ !
 if (task->task_id == CHECK_TASK_ID) {!
 const set<Memory> &vis_mems = !
 machine->get_visible_memories(task->target_proc);!
 for (unsigned idx = 0; idx < task->regions.size(); idx++) {!
 for(set<Memory>::iterator it = vis_mems.begin(); !
 it != vis_mems.end(); ++it) {!
 if (machine->get_memory_kind(*it) == Memory::SYSTEM_MEM)!
 {!
 task->regions[idx].target_ranking.push_back(*it);!
 break; !
 ...!

December 4, 2014 http://legion.stanford.edu

Changes in Event Graph

 Copy operation 7, 8, and 9 disappeared

25

December 4, 2014 http://legion.stanford.edu

Changes in Instance Graph

 We can verify that the check_task is using directly
the instances on the memory 0x1

26

December 4, 2014 http://legion.stanford.edu

Changes in Timeline

Gap reduced to 247ms

27

December 4, 2014 http://legion.stanford.edu

Questions?

