
December 4, 2014 1
http://legion.stanford.edu

Sean Treichler

Meta-Programming and JIT Compilation

December 4, 2014 2
http://legion.stanford.edu

Portability vs. Performance

  Many scientific codes spend ~100% of their cycles in a tiny
fraction of the code base

  We want these kernels to be as fast as possible, so we:
  Start with an efficient algorithm
  Rely on the compiler’s help to optimize the code
  Manually perform compiler-like optimizations (e.g. loop unrolling)
  Take advantage of processor-specific features (e.g. SIMD)
  Add prefetching, block transfers, etc. to improve memory BW
  Inline/fold values that are constant at compile-time
  Optimize for a known memory layout
  Hoist out computations based on run-time parameters that

change slowly/not at all
  Tune them based on run-time profiling
  ...

December 4, 2014 3
http://legion.stanford.edu

The Problem(s)

 Each additional step generally improves
performance, but:

  Decreases portability

 Can write multiple versions to target different
machines, use cases:

  Increases code devel/debug/maintenance costs

 Optimizations are baked into the checked-in source:
  Obfuscates intent of code

December 4, 2014 4
http://legion.stanford.edu

A Solution: Meta-Programming

  Instead of writing (many variations of) your kernel:
  Write code that generates the variations programmatically

  Ideally write kernels at a high level, focusing on
intent

 Apply target-/use-case-specific optimizations by
lowering code through layers of abstraction

  Code transformed programmatically, at compile time
  Provides benefits of abstraction, without runtime overhead
  Transformations themselves are often applicable to many
types of kernels

December 4, 2014 5
http://legion.stanford.edu

Meta-Programming isn’t New

 Meta-Programming exists in many forms today:
  Offline – app-specific code generators (e.g. Singe, FFTW)
  Compile-time – e.g. C++ templates
  Run-time – e.g. Lisp, MetaOCaml

 Legion applications already meta-programming
offline, at compile-time

 Would like to meta-program at runtime, in a way that:
  Generates FAST code
  Takes advantage of Legion runtime information

December 4, 2014 6
http://legion.stanford.edu

Introducing Lua-Terra

 An active research project at Stanford
http://terralang.org

 Starts with Lua:
  a very simple dynamic scripting language
  designed in late ‘90s, fairly “mature” at this point
  designed to be embeddable just about anywhere

 And then adds Terra:
  a statically typed, just-in-time (JIT) compiled language
  designed to interoperate with Lua code
  also designed to interoperate with existing compiled code

December 4, 2014 7
http://legion.stanford.edu

Introduction to Lua-Terra

function lua_addone(a)
 return a + 1
end

> = lua_addone(10)
11

terra terra_addone(a : int) : int
 return a + 1
end

> = terra_addone(10)
11

simple Lua function adds
to whatever it’s given

evaluated in Lua’s stack-
based VM

Terra looks a lot like Lua
code, except with types

function is compiled to native
code using LLVM, executed
directly on host CPU

December 4, 2014 8
http://legion.stanford.edu

Capturing JIT-time Constants

> X, Y = 10, 100

terra foo(a : int) : int
 for i = 0,X do
 a = a + Y
 end
end

> foo:disas()
...
assembly for function at address 0x22e6070
0x22e6070(+0): lea EAX, DWORD PTR [EDI + 1000]
0x22e6077(+7): ret

arbitrary Lua variables

captured when Terra
function is defined

allowing the compiler to
optimize a specialized version

December 4, 2014 9
http://legion.stanford.edu

Functions, Types are Lua Objects

function axpy(T)
 return terra(alpha : T, X : &T, Y : &T, n : int)
 for i=0,n do
 Y[i] = Y[i] + alpha * X[i]
 end
 end
end

saxpy = axpy(float)
daxpy = axpy(double)

caxpy = axpy(Complex(float))
zaxpy = axpy(Complex(double))

Lua function takes a type as a parameter

defines an anonymous
Terra function, using the in-
scope Lua variable for type

base Terra types are just Lua
values, functions returned by
“generator” are given useful names

types themselves can be
generated by other Lua code

December 4, 2014 10
http://legion.stanford.edu

Quotes, Escapes

function spmv(A)
 local function body(y, x)
 local assns = {}
 for i = 1,A.rows do
 local sum = `0
 for _,nz in pairs(A[i]) do
 local col, weight = nz[1], nz[2]
 sum = `sum + weight * x[col]
 end
 assns[i] = quote y[i-1] = sum end
 end
 return assns
 end
 return terra(y : &double, x : &double)
 [body(y, x)]
 end
end

Lua code looks at structure of
sparse matrix at invocation

iterates to generate a
quoted Terra expression for
each row’s sum

returns the sequence of
quoted Terra statements a list

escape from Terra to Lua to generate list,
interpolate statements into Terra function

December 4, 2014 11
http://legion.stanford.edu

Portability, Dynamic Tasks

 Terra generates LLVM IR/bitcode – can target:
  x86 (+SSE, AVX, AVX512, ...)
  CUDA
  ARM
  anything else for which an LLVM backend exists

 Expanding Legion task registration API
  Tasks can be dynamically registered during execution
  Take advantage of properties of program input
  Registration can specify constraints on usage

  Preserves mapper’s ability to make “arbitrary” decisions

December 4, 2014 12
http://legion.stanford.edu

On-Demand Variant Generation

 Recall that multiple variants of a task can be
registered

  Runtime will select a variant that is compatible with the
processor, instance layouts chosen by the mapper
  Don’t really want to pre-generate all possible variants
though...

  Instead register a “variant generator” function
  Generator function is written in Lua
  Will be called by the runtime if no suitable variant exists
  Runtime provides the processor/layout information
  Generator function returns a new task variant and
conditions under which it can be used

December 4, 2014 13
http://legion.stanford.edu

Meta-Programming within Legion

 Planning to take advantage of meta-programming
within runtime as well

 DMA Subsystem
  Exponential explosion of memory types, instance layouts
  Could even specialize for particular index space sparsity

 Avoiding compile-time capacity limits
  e.g. number of fields per instance

 Dynamic optimization of dependency analysis
  next step after trace replay

December 4, 2014 14
http://legion.stanford.edu

Beyond Lua-Terra

 Modular architecture - Terra is just the trailblazer

 Task registration API supports different “languages”
  C function pointer
  Terra expression
  name of symbol from dynamic shared object
  LLVM IR
  ...

 Works for variant generators as well
Lua
  native C/C++?
  queries to a remote database?

