AAAAAAAAAAAAAAAAAA

Legion Overview:
What's New in 2015?
Alex Aiken

December 7, 2015 http://legion.stanford.edu

N
> IEAIamos

NATIONAL LABORATORY

Bootcamp Logistics

EST.1943
.

@ Monday
@ Parking
@ Lunch
@ Dinner

@ Tuesday
@ Programming exercise
@ Bring your laptops!

December 7, 2015 http://legion.stanford.edu

AAAAAAAAAAAAAAAAAA

EST.1943
—.] NVIDIA
»

Bootcamp Focus

@ Writing Legion programs
@ Different from the academic papers
@ Cover many pragmatic, usability aspects

@ Today
@ Brief overview of the programming model
@ Deeper dives on major changes in 2015
@ Overview of a familiar application (MiniAero)
@ Debugging & profiling

@ Tomorrow: Programming exercise

3
December 7, 2015 http://legion.stanford.edu

AAAAAAAAAAAAAAAAAA

EST.1943
<~ NVIDIA
= o

Programming System Goals

High Performance
We must be fast

Performance Portability

Across many kinds of machines and over many
generations

Programmability
Sequential semantics, parallel execution

December 7, 2015 http://legion.stanford.edu

A
° Ifc?sAIamos

NATIONAL LABORATORY

Can We Fulfill These Goals Today

Yes ... at great cost:

R e Who will schedule the graph?
N aE (High Performance)

=~ . ANVIDIA.

Who will re-schedule the graph
for every new machine?
(Performance Portability)

Who is responsible
for generating the graph?
(Programmability)

Today: programmer’s responsibility

Tomorrow: programming system’s
responsibility

Task graph for one time step on one node...
... of a mini-app

December 7, 2015 http://legion.stanford.edu

N
> IEAIamos

NATIONAL LABORATORY

EST.1943
ANVIDIA
= ®

Legion Overview

@ A programming model for heterogeneous,
distributed machines

@ Heterogeneous
¢ Mixed CPUs and GPUs

@ Distributed

@ Large spread, and variability, of communication latencies
@ Caches, RAM, NUMA, network, ...

December 7, 2015 http://legion.stanford.edu

N
> I.?sAIamos

NATIONAL LABORATORY

Philosophy

s EST.1943
— @~ NVIDIA
\ ®

@ Designed to be a real programming system
@ Good abstractions, clear semantics

@ But can also “open the hood”

@ Ways to drop down to lower levels of abstraction
@ Within the programming model

December 7, 2015 http://legion.stanford.edu

u - ' NLA?()erﬁngng(§
Legion: Tasks & Regions s ——
. ANVIDIA.
@ A task is the unit of parallel execution
0 | 272
@ Task arguments are regions 1T | 314
@ Collections
: 2 | 420
@ Rows are an index space
@ Columns are fields 3 | 127
@ Tasks declare how they use their regions 4 | 990

task saxpy(is : ispace(int1d), x,y: region(is, float), a: float)
where reads(x, y), writes(y)

December 7, 2015 http://legion.stanford.edu ’

/A
° IRAIamos

AAAAAAAAAAAAAAAAAA

Example Task
= @A NVIDIA.

task saxpy(is : ispace(int1d), x: region(is, float),
y: region(is, float), a: float)

where

reads(x, y), writes(y)
do

foriinis do

y[i] += a™x[i]

end

end

December 7, 2015 http://legion.stanford.edu

N
> I.?sAIamos

NATIONAL LABORATORY

Regions

<X nVIDIA,
@ Regions can be partitioned into subregions
@ Partitioning is a primitive operation
@ Supports describing arbitrary subsets of a region
10

December 7, 2015 http://legion.stanford.edu

» Los Alamos

AAAAAAAAAAAAAAAAAA

Y SANVIDIA.

Partitioning

December 7, 2015 http://legion.stanford.edu)

Partitioning

[P, S] = partition(ps_map, N)

12

December 7, 2015 http://legion.stanford.edu

» Los Alamos

NATIONAL LABORATORY

Partitioning

5P SANVIDIA.

[P, S] = partition(ps_map, N)
private = partition(private_map, P) ’
shared = partition(shared_map, S)
ghost = partition(ghost_map, S)

13

December 7, 2015 http://legion.stanford.edu

N
> [c?sAIamos

NATIONAL LABORATORY

Summary: Regions
Y 9 <@ANVIDIA.

@ Regions have Voltage Capac. Induct. Charge

@ Entries (rows) Node

@ Fields (columns) Node

Node

@ Regions can be Node
@ Partitioned by rows

o Sliced by fields Node

Node

Node

Node

Node

Node

14
December 7, 2015 http://legion.stanford.edu

Tasks

@ Tasks can call subtasks
@ Sequential semantics, implicit parallelism
@ If tasks do not interfere, can be executed in parallel

task foo(x,y,z: region(...))
where reads(x,y,z),writes(x,y,z) do
bar(y,x)
bar(x,y)
bar(x,z)
bar(z,y)
end
task bar(r,s: region(...)) where reads(r), writes(s)

15

December 7, 2015 http://legion.stanford.edu

Deferred Execution

task foo(x,y,z: region(...))
where reads(x,y,z),writes(x,y,z) do
S bar(y,x)
S bar(x,y)
W bar(x,z)
W bar(z,y)
end
task bar(r,s: region(...)) where reads(r), writes(s)

Legion Runtime

1 PPV 2D e Irttp-egiomstarfordredr—

N
> I.?sAIamos

NATIONAL LABORATORY

-4 EST.1943

16

» Los Alamos

NATIONAL LABORATORY

Mapping Interface

@ Application selects:
@ Where tasks run
@ Where regions are placed

5P SANVIDIA.

@ Mapping computed dynamically

@ Decouple correctness from
performance

2= P

o
—

S

—

17
December 7, 2015 http://legion.stanford.edu

- Los Alamos

B ac k to th e TO p NATIONA:STL_;O;‘B,?RATORY
<@ANVIDIA.

[N e B

/ I F:*‘h,; ‘jE | “‘

| *;] imatiN ; | | \

‘ “ é% \ Il |] .
Y i Who will schedule the graph?
d 2H (High Performance)

49 i iy

I : TS ‘ .

i + ﬁi Who will re-schedule the graph
|l TR | for every new machine?

i e (Performance Portability)

f\“/ %;ﬁ =

I\ :sé =
f =5 Who is responsible
(| ! for generating the graph?
s = (Programmability)

| S ‘%{_ e \

| ﬁ- e
O . 4 f Lo

N J‘ I a— N

|| - SE=s |\

| == -

= e

== %‘}P —

18
December 7, 2015 http://legion.stanford.edu

/A
° IRAIamos

AAAAAAAAAAAAAAAAAA

More on Permissions

Y SANVIDIA.

@ Tasks declare permissions on regions
task bar(r: region(...)) where reads(r)
task bar(r: region(...)) where writes(r)

task bar(r: region(...)) where reduces +(r)

December 7, 2015 http://legion.stanford.edu ®

/A
° IRAIamos

AAAAAAAAAAAAAAAAAA
EST.19

. ANVIDIA.

And Coherence

@ Tasks declare coherence of regions
@ With respect to sibling tasks

task bar(r: region(...)) where exclusive(r)
task bar(r: region(...)) where atomic(r)

task bar(r: region(...)) where simultaneous(r)

December 7, 2015 http://legion.stanford.edu “

A
° IEAIamos

AAAAAAAAAAAAAAAAAA

Atomic Coherence

Y SANVIDIA.

task foo(x: region(...)) where reads(x), writes(x),
exclusive(x)

do
bar(x)
bazz(x)
end

task bar(r: region(...)) where reads(r), writes(r), atomic(r)
task bazz(r: region(...)) where reads(r), writes(r), atomic(r)

December 7, 2015 http://legion.stanford.edu “

A
° IEAIamos

AAAAAAAAAAAAAAAAAA

Simultaneous Coherence
= & NVIDIA

task foo(x: region(...)) where reads(x), writes(x)
do

bar(x)

bazz(x)
end

task bar(r: region(...)) where reads(r), writes(r),
simultaneous(r)

task bazz(r: region(...)) where reads(r), writes(r),
simultaneous(r)

December 7, 2015 http://legion.stanford.edu *

/O
> I.?sAIamos

NATIONAL LABORATORY

Simultaneous Coherence

Y EST.1943
Y SANVIDIA
\— o

* Progressive relaxation of coherence
Exclusive > Atomic > Simultaneous

e Simultaneous coherence

* Implies programmer involvement in managing
concurrency

* Additional primitives
* acquire(r), release(r), phase barriers

* An example of “opening the hood”

* Programmer takes responsibility for coordination between
tasks using simultaneous coherence

23
December 7, 2015 http://legion.stanford.edu

/O
> I.?sAIamos

NATIONAL LABORATORY

SANVIDIA.

S3D

* Combustion simulation, explicit method
* Physics and complex chemistry
* Collaboration with Jackie Chen’s group (Sandia)
* Part of the ExaCT Center

* Structure of S3D

* Partition volume across nodes

* Launch one long-running task per node
* Some private data (exclusive)
* Some shared data (simultaneous)
* Use acquire/release to mediate access
* Within a node
* Tasks launch subtasks with exclusive or atomic coherence
* Some tasks mapped to GPU, some to CPU

December 7, 2015 http://legion.stanford.edu “

N
> I./ojsAIamos

NATIONAL LABORATORY

Legion Heptane Performance L
JNVIDIA.

@ 1.73X - 2.85X faster between 1024 and 8192 nodes

i <> <> i i i i i i
. 20 A
© | i | i i i i i
EFI&WM)KD——~ . Q),” ~r~§?~rr~ ””i}"” = ‘i””' ~77L7~~ ,,,”3”” - p~r~ ”,,”3””,
i) : : @ @ @ O : :
5 B @)) : : ‘ : ® : e
o : 5 o : : ©) : ; @ ®
g | f f----@m----m ® 1 % % o
z [| | | | = | - L = 0 | |
& 100000 3 3 3 - R | 3 3 |
5 10000 I R SR SR B
5 |9 ® 0] i o 5N o ® | |
: & ¢ Sy ST S GRS
£ ‘ ‘ ‘ ‘ L4 o o ‘
. E @ .
‘ : [| i
BO000 - - T
)
: : : : : : : : |I|
] [Titan Legion 48° []] Keeneland Legion 48* [{f] Titan OpenACC 48% | : ;
O © Titan Legion 64° @ @ Keeneland Legion 64> @ @ Titan OpenACC 64° :
Titan Legion 963 <><> Keeneland Legion 963
05 2 2 8 16 32 64 128 256 512 1024 2048 2096 8192

Nodes

25
December 7, 2015 http://legion.stanford.edu

» Los Alamos

NATIONAL LABORATORY

Heptane Mapping for 96 5 o

@ Different mapping than smaller problem sizes
@ Not enough room in 6 GB GPU framebuffer

@ OpenACC requires code changes

@ Note “ragged phases”
@ Deferred execution tolerant of latency/execution variance
@ Not shown: Overlap of data movement
S %, § AUERL U 5 Tl 0, S | P A AN om0 S i e,

Il I | .

[—
5 B B i e 1 I [I] I 1 11 [
I N — ENS— S I ! I I
I I - I I | IR E— — 1 | I - 1 |
I e | — | N R I N 1] o1
I I I T I L 1 I 11 1 I
IS e 0 11 e, I N | O | | T T R 1 I I | 1 I |
LI | E— | 1 . | | | 1 1 1
| —— - i rrrerrra . & & NS EEE RN . I I
[_______BEIII 11 [N B L & 8 [R S . I I
e L Ll e 0yl I nns B |1 [N -

26
December 7, 2015 http://legion.stanford.edu

N
> IEAIamos

NATIONAL LABORATORY

Legion PRF Performance L
SANVIDIA.

@ 116 species mechanism, >2X as large as heptane
@ New science, never before done

80000 —
000 R S S S S S S S S S S

60000 |- b b T S N AP o SO b b S b

2 S0 TR — S SN N AR N — Y N @ TR
é : : : : : : : : : : @ : : O
§ : : : : : : : : : : : @
o 40000 PO G G GHD G G Gl G R S S S i
S S S G SR SEE U SEET SRR SRS
Sl B T e T A R . SC °
= ‘ ‘ ‘ ‘]] i O] H m T
90000 Lo S R S A S T S R S
B o P P P P P P p p P P
© @ Mixed CPU-GPU 48° [[AI-GPU 323 : : : : : ‘ ‘ ‘
Mixed CPU-GPU 64 @ @ AI-GPU 48| | ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 1‘ é 4‘\- é 1‘6 3‘2 6‘4 1 éS 25‘6 5“| 2 1 0‘24 20‘48 40‘96 81‘92

Nodes

December 7, 2015 http://legion.stanford.edu v

N
> I.?sAIamos

NATIONAL LABORATORY

The Crux

s EST.1943
— @~ NVIDIA
\ ®

@ Crucial design decisions in a Legion program are:
@ What are the regions?
@ How are the regions partitioned?

@ The answers drive the program’s design

December 7, 2015 http://legion.stanford.edu “

N
> L?s Alamos

NATIONAL LABORATORY

Legion Overview Summary) e
— @2 NVIDIA.

@ The programmer
@ Describes the structure of the program’s data
@ Regions
@ The tasks that operate on that data

@ The Legion implementation

@ Guarantees tasks appear to execute in sequential order
@ Unless the programmer relaxes coherence

@ Ensures tasks have the correct versions of their regions

29
December 7, 2015 http://legion.stanford.edu

N
> L?s Alamos

NATIONAL LABORATORY

The Past Year

@ The project has changed
@ Legion group has grown substantially
@ Lots of interaction with users
@ Learned a lot about Legion, including flaws!

@ Mid-2015 strategic plan
@ Focus on fixing core issues

@ Even if it involves major changes
@ Will not get any easier in the future!

@ Results are starting to roll out now.

30
December 7, 2015 http://legion.stanford.edu

N
> L?s Alamos

NATIONAL LABORATORY

Problem #1

EST.1943
—.] NVIDIA
’ »

* C++ APlis verbose, a lot to learn
* Many semantic requirements are unchecked

°* No help with kernel code
* Legion is about managing data and black-box tasks
* Doesn’t address generating efficient task code

Decision: These issues can’t and shouldn’t be
addressed in the C++ API

31
December 7, 2015 http://legion.stanford.edu

N
° IEAIamos

NATIONAL LABORATORY

A @a NVIDIA.

Legion Architecture

Application Regent DSL

Realm: Low-Level Runtime

GasNet

32
December 7, 2015 http://legion.stanford.edu

AAAAAAAAAAAAAAAAAA

Y SANVIDIA

Regent: A Legion Language

task saxpy(is : ispace(int1d), x: region(is, float),
y: region(is, float), a: float)

where reads(x, y), writes(y)
do

foriinis do

y[i] += a™x[i]

end

end

December 7, 2015 http://legion.stanford.edu >

N
> L?s Alamos

NATIONAL LABORATORY

Problem #2: Partitioning

@ Creation of partitions is hard to fully distribute
@ Inherent in the original design
@ Deal-breaker for some applications

@ Solution
@ Design a new partitioning system
@ More concise and much higher performance

December 7, 2015 http://legion.stanford.edu ¥

N
> I.?sAIamos

NATIONAL LABORATORY

Problem #3: Mapping

<A NVIDIA.

@ Mapping interface is at the wrong level of abstraction
@ User has to say “do exactly this”
@ Much better would be “do at least this”
@ Or “do at most this”

@ Solution
@ A new constraint-based mapper interface

35
December 7, 2015 http://legion.stanford.edu

Problem #4: 1/0 L P

SANVIDIA

@ Must be able to
@ Read/write files
@ Produced by other applications
@ In parallel

@ Solution
@ A new I/O subsystem

@ Understands how to interpret distributed file formats as
partitioned regions

36
December 7, 2015 http://legion.stanford.edu

N
> L?s Alamos

NATIONAL LABORATORY

Problem #5: Breaking Changes

@ More developers + more users
@ Users getting blocked by research-level software practices

@ Introduce more disciplined development
@ Clean-up, rationalization of the repository
@ Investing in testing infrastructure
@ Including the mundane and the high-end

37
December 7, 2015 http://legion.stanford.edu

Today’s Talks

@ Regent (Elliott)

@ Partitioning (Sean)

@ Mapping (Mike)

@ 1/0 (Zhihao)

@ Debugging & Profiling (Wonchan)

@ Application walkthrough (Wonchan)
@ User experiences (Galen, Steve, Hemanth, Philippe)

38

December 7, 2015 http://legion.stanford.edu

N
> IEAIamos

NATIONAL LABORATORY

More To Come

EST.1943
SANVIDIA
\
L ®

@ These are not the only changes/features coming

@ More at the end of the day

December 7, 2015 http://legion.stanford.edu »

A
° IEAIamos

NATIONAL LABORATORY

@ANVIDIA.

Questions?

December 7, 2015 http://legion.stanford.edu N

