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Alex Aiken 

Legion Overview:  
What’s New in 2015? 
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Bootcamp Logistics 

 Monday 
  Parking 
  Lunch 
  Dinner 

 Tuesday 
  Programming exercise 
  Bring your laptops! 
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Bootcamp Focus 

 Writing Legion programs 
  Different from the academic papers 
  Cover many pragmatic, usability aspects 

 
 Today 

  Brief overview of the programming model 
  Deeper dives on major changes in 2015 
  Overview of a familiar application (MiniAero) 
  Debugging & profiling 

 
 Tomorrow: Programming exercise 
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Programming System Goals 

High Performance 
We must be fast 

 
Performance Portability 

Across many kinds of machines and over many 
generations 

 
Programmability 

Sequential semantics, parallel execution 
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Can We Fulfill These Goals Today? 
Yes … at great cost: 

Task graph for one time step on one node… 

… of a mini-app 

Who will schedule the graph? 
(High Performance) 

Who will re-schedule the graph 
for every new machine? 
(Performance Portability) 

Who is responsible 
for generating the graph? 

(Programmability) 

Today: programmer’s responsibility 

Tomorrow: programming system’s 
responsibility 
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Legion Overview 

 A programming model for heterogeneous, 
distributed machines 

 Heterogeneous 
  Mixed CPUs and GPUs 

 Distributed 
  Large spread, and variability, of communication latencies 
  Caches, RAM, NUMA, network, … 
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Philosophy 

 Designed to be a real programming system 

 Good abstractions, clear semantics 

 But can also “open the hood” 
  Ways to drop down to lower levels of abstraction 
  Within the programming model 
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Legion: Tasks & Regions 

 A task is the unit of parallel execution 

 Task arguments are regions 
  Collections 
  Rows are an index space 
  Columns are fields 

 Tasks declare how they use their regions  
 
 
task saxpy(is : ispace(int1d), x,y: region(is, float), a: float ) 

where reads(x, y), writes(y) 
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Example Task 

 
task saxpy(is : ispace(int1d), x: region(is, float), 

   y: region(is, float), a: float) 
where 
  reads(x, y), writes(y) 
do 
  for i in is do 
    y[i] += a*x[i] 
  end 
end 
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Regions 

 Regions can be partitioned into subregions 

 Partitioning is a primitive operation 
  Supports describing arbitrary subsets of a region 
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Partitioning 
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Partitioning 
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Summary: Regions 

 Regions have 
  Entries (rows)  
  Fields (columns) 

 Regions can be 
  Partitioned by rows 
  Sliced by fields  
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Tasks 

 Tasks can call subtasks 
  Sequential semantics, implicit parallelism 
  If tasks do not interfere, can be executed in parallel 

task foo(x,y,z: region(…))  
where reads(x,y,z),writes(x,y,z) do 

 bar(y,x) 
 bar(x,y) 
 bar(x,z) 
 bar(z,y) 

end 
task bar(r,s: region(…)) where reads(r), writes(s) 
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Legion Runtime 

Deferred Execution 
task foo(x,y,z: region(…))  
where reads(x,y,z),writes(x,y,z) do 

 bar(y,x) 
 bar(x,y) 
 bar(x,z) 
 bar(z,y) 

end 
task bar(r,s: region(…)) where reads(r), writes(s) 

bar(y,x) 

bar(x,y) bar(x,z) 

bar(z,y) 
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Mapping Interface 
 Application selects: 

  Where tasks run 
  Where regions are placed 

 Mapping computed dynamically 

 Decouple correctness from 
performance 

17	
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Back to the Top 

Who will schedule the graph? 
(High Performance) 

Who will re-schedule the graph 
for every new machine? 
(Performance Portability) 

Who is responsible 
for generating the graph? 

(Programmability) 
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More on Permissions 

 Tasks declare permissions on regions 
 

task bar(r: region(…)) where reads(r) 
 

task bar(r: region(…)) where writes(r) 
 

task bar(r: region(…)) where reduces +(r) 
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And Coherence 

 Tasks declare coherence of regions 
  With respect to sibling tasks 

task bar(r: region(…)) where exclusive(r) 
 

task bar(r: region(…)) where atomic(r) 
 

task bar(r: region(…)) where simultaneous(r) 
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Atomic Coherence 

 
task foo(x: region(…)) where reads(x), writes(x),   

                                                        exclusive(x) 
do 

 bar(x) 
 bazz(x) 

end 
 
task bar(r: region(…)) where reads(r), writes(r), atomic(r) 
 
task bazz(r: region(…)) where reads(r), writes(r), atomic(r) 
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Simultaneous Coherence 

 
task foo(x: region(…)) where reads(x), writes(x) 
do 

 bar(x) 
 bazz(x) 

end 
 
task bar(r: region(…)) where reads(r), writes(r),  

     simultaneous(r) 
 
task bazz(r: region(…)) where reads(r), writes(r),  

     simultaneous(r) 
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Simultaneous Coherence 

 
•  Progressive relaxation of coherence 

Exclusive > Atomic > Simultaneous 
 

•  Simultaneous coherence 
•  Implies programmer involvement in managing 

concurrency  
•  Additional primitives 

•  acquire(r), release(r), phase barriers 

•  An example of “opening the hood” 
•  Programmer takes responsibility for coordination between 

tasks using simultaneous coherence 
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S3D 

•  Combustion simulation, explicit method 
•  Physics and complex chemistry 
•  Collaboration with Jackie Chen’s group (Sandia) 
•  Part of the ExaCT Center 
 

•   Structure of S3D 
•  Partition volume across nodes 
•  Launch one long-running task per node   

•  Some private data (exclusive) 
•  Some shared data (simultaneous) 
•  Use acquire/release to mediate access 

•  Within a node 
•  Tasks launch subtasks with exclusive or atomic coherence 
•  Some tasks mapped to GPU, some to CPU 
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Legion Heptane Performance 
 1.73X - 2.85X faster between 1024 and 8192 nodes 
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Heptane Mapping for 963 
 Different mapping than smaller problem sizes 

  Not enough room in 6 GB GPU framebuffer 
OpenACC requires code changes 

 Note “ragged phases” 
  Deferred execution tolerant of latency/execution variance 

 Not shown: Overlap of data movement 
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Legion PRF Performance 
 116 species mechanism, >2X as large as heptane 

  New science, never before done 



December 7, 2015 28 
http://legion.stanford.edu 

The Crux 

 Crucial design decisions in a Legion program are: 

 What are the regions? 

 How are the regions partitioned? 

 The answers drive the program’s design 
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Legion Overview Summary 

 The programmer 
  Describes the structure of the program’s data 

  Regions 
  The tasks that operate on that data 

 
 The Legion implementation 

  Guarantees tasks appear to execute in sequential order 
  Unless the programmer relaxes coherence 

  Ensures tasks have the correct versions of their regions 
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The Past Year 

 The project has changed 
  Legion group has grown substantially 
  Lots of interaction with users 
  Learned a lot about Legion, including flaws! 

 
 

 Mid-2015 strategic plan 
  Focus on fixing core issues 
  Even if it involves major changes 
  Will not get any easier in the future! 

 Results are starting to roll out now. 
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Problem #1 

•  C++ API is verbose, a lot to learn 

•  Many semantic requirements are unchecked 

•  No help with kernel code 
•  Legion is about managing data and black-box tasks 
•  Doesn’t address generating efficient task code 

Decision: These issues can’t and shouldn’t be 
addressed in the C++ API 
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Legion Architecture 

Realm: Low-Level Runtime 
 

GasNet 

High-Level Runtime 

Application DSL Regent 
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Regent: A Legion Language 

 
task saxpy(is : ispace(int1d), x: region(is, float), 

   y: region(is, float), a: float) 
where reads(x, y), writes(y) 
do 
  for i in is do 
    y[i] += a*x[i] 
  end 
end 
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Problem #2: Partitioning 

 Creation of partitions is hard to fully distribute 
  Inherent in the original design 
  Deal-breaker for some applications 

 Solution 
  Design a new partitioning system 
  More concise and much higher performance 
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Problem #3: Mapping 

 Mapping interface is at the wrong level of abstraction 
  User has to say “do exactly this” 
  Much better would be “do at least this” 
  Or “do at most this” 

 Solution 
  A new constraint-based mapper interface 
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Problem #4: I/O 

 Must be able to  
  Read/write files 
  Produced by other applications 
  In parallel 

 Solution 
  A new I/O subsystem 
  Understands how to interpret distributed file formats as 
partitioned regions 
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Problem #5: Breaking Changes 

 More developers + more users 
  Users getting blocked by research-level software practices 

  Introduce more disciplined development 
  Clean-up, rationalization of the repository 
  Investing in testing infrastructure 
  Including the mundane and the high-end  
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Today’s Talks 

 Regent (Elliott) 
 Partitioning (Sean) 
 Mapping (Mike) 
  I/O (Zhihao) 
 Debugging & Profiling (Wonchan) 

 Application walkthrough (Wonchan) 
 User experiences (Galen, Steve, Hemanth, Philippe) 
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More To Come 

 These are not the only changes/features coming 

 More at the end of the day 
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Questions? 


