
December 7, 2015 1
http://legion.stanford.edu

Alex Aiken

Legion Overview:
What’s New in 2015?

December 7, 2015 2
http://legion.stanford.edu

Bootcamp Logistics

 Monday
  Parking
  Lunch
  Dinner

 Tuesday
  Programming exercise
  Bring your laptops!

December 7, 2015 3
http://legion.stanford.edu

Bootcamp Focus

 Writing Legion programs
  Different from the academic papers
  Cover many pragmatic, usability aspects

 Today

  Brief overview of the programming model
  Deeper dives on major changes in 2015
  Overview of a familiar application (MiniAero)
  Debugging & profiling

 Tomorrow: Programming exercise

December 7, 2015 4
http://legion.stanford.edu

Programming System Goals

High Performance
We must be fast

Performance Portability

Across many kinds of machines and over many
generations

Programmability

Sequential semantics, parallel execution

December 7, 2015 5
http://legion.stanford.edu

Can We Fulfill These Goals Today?
Yes … at great cost:

Task graph for one time step on one node…

… of a mini-app

Who will schedule the graph?
(High Performance)

Who will re-schedule the graph
for every new machine?
(Performance Portability)

Who is responsible
for generating the graph?

(Programmability)

Today: programmer’s responsibility

Tomorrow: programming system’s
responsibility

December 7, 2015 6
http://legion.stanford.edu

Legion Overview

 A programming model for heterogeneous,
distributed machines

 Heterogeneous
  Mixed CPUs and GPUs

 Distributed
  Large spread, and variability, of communication latencies
  Caches, RAM, NUMA, network, …

December 7, 2015 7
http://legion.stanford.edu

Philosophy

 Designed to be a real programming system

 Good abstractions, clear semantics

 But can also “open the hood”
  Ways to drop down to lower levels of abstraction
  Within the programming model

December 7, 2015 8
http://legion.stanford.edu

Legion: Tasks & Regions

 A task is the unit of parallel execution

 Task arguments are regions
  Collections
  Rows are an index space
  Columns are fields

 Tasks declare how they use their regions

task saxpy(is : ispace(int1d), x,y: region(is, float), a: float)

where reads(x, y), writes(y)

0

1

2

3

4

2.72

3.14

42.0

12.7

0.0

December 7, 2015 9
http://legion.stanford.edu

Example Task

task saxpy(is : ispace(int1d), x: region(is, float),

 y: region(is, float), a: float)
where
 reads(x, y), writes(y)
do
 for i in is do
 y[i] += a*x[i]
 end
end

December 7, 2015 10
http://legion.stanford.edu

Regions

 Regions can be partitioned into subregions

 Partitioning is a primitive operation
  Supports describing arbitrary subsets of a region

December 7, 2015 11
http://legion.stanford.edu

Partitioning

December 7, 2015 12
http://legion.stanford.edu

Partitioning
	

	
 	

	
 	

	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 [
 P,	
 S	
]	
 =	
 par++on(ps_map,	
 N)	

	
 	
 	
 	
 	
 	
 	

	

	

	

	

	

	

	

	

	

SP

N

December 7, 2015 13
http://legion.stanford.edu

Partitioning
	

	
 	

	
 	

	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 [
 P,	
 S	
]	
 =	
 par++on(ps_map,	
 N)	

	
 	
 	
 	
 	
 	
 private	
 =	
 par++on(private_map,	
 P)	

	
 	
 	
 	
 	
 	
 shared	
 =	
 par++on(shared_map,	
 S)	
 	

	
 	
 	
 	
 	
 	
 ghost	
 =	
 par++on(ghost_map,	
 S)	

	
 	
 	
 	
 	
 	
 	

	

	

	

	

	

	

N

s1 s3 …

SP

g1 g3 … p1 p3 …

December 7, 2015 14
http://legion.stanford.edu

Summary: Regions

 Regions have
  Entries (rows)
  Fields (columns)

 Regions can be
  Partitioned by rows
  Sliced by fields

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Voltage Capac. Induct. Charge

December 7, 2015 15
http://legion.stanford.edu

Tasks

 Tasks can call subtasks
  Sequential semantics, implicit parallelism
  If tasks do not interfere, can be executed in parallel

task foo(x,y,z: region(…))
where reads(x,y,z),writes(x,y,z) do

 bar(y,x)
 bar(x,y)
 bar(x,z)
 bar(z,y)

end
task bar(r,s: region(…)) where reads(r), writes(s)

December 7, 2015 16
http://legion.stanford.edu

Legion Runtime

Deferred Execution
task foo(x,y,z: region(…))
where reads(x,y,z),writes(x,y,z) do

 bar(y,x)
 bar(x,y)
 bar(x,z)
 bar(z,y)

end
task bar(r,s: region(…)) where reads(r), writes(s)

bar(y,x)

bar(x,y) bar(x,z)

bar(z,y)

December 7, 2015 17
http://legion.stanford.edu

Mapping Interface
 Application selects:

  Where tasks run
  Where regions are placed

 Mapping computed dynamically

 Decouple correctness from
performance

17	

t1

t2

t3

t4
t5

rc

rw

rw1 rw2

rn

rn1 rn2

$

$

$

$

N
U
M
A

N
U
M
A

FB

D
R
A
M

x86

CUDA

x86

x86

x86

December 7, 2015 18
http://legion.stanford.edu

Back to the Top

Who will schedule the graph?
(High Performance)

Who will re-schedule the graph
for every new machine?
(Performance Portability)

Who is responsible
for generating the graph?

(Programmability)

December 7, 2015 19
http://legion.stanford.edu

More on Permissions

 Tasks declare permissions on regions

task bar(r: region(…)) where reads(r)

task bar(r: region(…)) where writes(r)

task bar(r: region(…)) where reduces +(r)

December 7, 2015 20
http://legion.stanford.edu

And Coherence

 Tasks declare coherence of regions
  With respect to sibling tasks

task bar(r: region(…)) where exclusive(r)

task bar(r: region(…)) where atomic(r)

task bar(r: region(…)) where simultaneous(r)

December 7, 2015 21
http://legion.stanford.edu

Atomic Coherence

task foo(x: region(…)) where reads(x), writes(x),

 exclusive(x)
do

 bar(x)
 bazz(x)

end

task bar(r: region(…)) where reads(r), writes(r), atomic(r)

task bazz(r: region(…)) where reads(r), writes(r), atomic(r)

December 7, 2015 22
http://legion.stanford.edu

Simultaneous Coherence

task foo(x: region(…)) where reads(x), writes(x)
do

 bar(x)
 bazz(x)

end

task bar(r: region(…)) where reads(r), writes(r),

 simultaneous(r)

task bazz(r: region(…)) where reads(r), writes(r),

 simultaneous(r)

December 7, 2015 23
http://legion.stanford.edu

Simultaneous Coherence

•  Progressive relaxation of coherence

Exclusive > Atomic > Simultaneous

•  Simultaneous coherence
•  Implies programmer involvement in managing

concurrency
•  Additional primitives

•  acquire(r), release(r), phase barriers

•  An example of “opening the hood”
•  Programmer takes responsibility for coordination between

tasks using simultaneous coherence

December 7, 2015 24
http://legion.stanford.edu

S3D

•  Combustion simulation, explicit method
•  Physics and complex chemistry
•  Collaboration with Jackie Chen’s group (Sandia)
•  Part of the ExaCT Center

•  Structure of S3D
•  Partition volume across nodes
•  Launch one long-running task per node

•  Some private data (exclusive)
•  Some shared data (simultaneous)
•  Use acquire/release to mediate access

•  Within a node
•  Tasks launch subtasks with exclusive or atomic coherence
•  Some tasks mapped to GPU, some to CPU

December 7, 2015 25
http://legion.stanford.edu

Legion Heptane Performance
 1.73X - 2.85X faster between 1024 and 8192 nodes

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Nodes

0

50000

100000

150000

200000

Th
ro

ug
hp

ut
Pe

rN
od

e
(P

oi
nt

s/
s)

Titan Legion 483

Titan Legion 643

Titan Legion 963

Keeneland Legion 483

Keeneland Legion 643

Keeneland Legion 963

Titan OpenACC 483

Titan OpenACC 643

December 7, 2015 26
http://legion.stanford.edu

Heptane Mapping for 963
 Different mapping than smaller problem sizes

  Not enough room in 6 GB GPU framebuffer
OpenACC requires code changes

 Note “ragged phases”
  Deferred execution tolerant of latency/execution variance

 Not shown: Overlap of data movement

December 7, 2015 27
http://legion.stanford.edu

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Nodes

0

10000

20000

30000

40000

50000

60000

70000

80000

Th
ro

ug
hp

ut
Pe

rN
od

e
(P

oi
nt

s/
s)

Mixed CPU-GPU 483

Mixed CPU-GPU 643

All-GPU 323

All-GPU 483

Legion PRF Performance
 116 species mechanism, >2X as large as heptane

  New science, never before done

December 7, 2015 28
http://legion.stanford.edu

The Crux

 Crucial design decisions in a Legion program are:

 What are the regions?

 How are the regions partitioned?

 The answers drive the program’s design

December 7, 2015 29
http://legion.stanford.edu

Legion Overview Summary

 The programmer
  Describes the structure of the program’s data

  Regions
  The tasks that operate on that data

 The Legion implementation

  Guarantees tasks appear to execute in sequential order
  Unless the programmer relaxes coherence

  Ensures tasks have the correct versions of their regions

December 7, 2015 30
http://legion.stanford.edu

The Past Year

 The project has changed
  Legion group has grown substantially
  Lots of interaction with users
  Learned a lot about Legion, including flaws!

 Mid-2015 strategic plan
  Focus on fixing core issues
  Even if it involves major changes
  Will not get any easier in the future!

 Results are starting to roll out now.

December 7, 2015 31
http://legion.stanford.edu

Problem #1

•  C++ API is verbose, a lot to learn

•  Many semantic requirements are unchecked

•  No help with kernel code
•  Legion is about managing data and black-box tasks
•  Doesn’t address generating efficient task code

Decision: These issues can’t and shouldn’t be
addressed in the C++ API

December 7, 2015 32
http://legion.stanford.edu

Legion Architecture

Realm: Low-Level Runtime

GasNet

High-Level Runtime

Application DSL Regent

December 7, 2015 33
http://legion.stanford.edu

Regent: A Legion Language

task saxpy(is : ispace(int1d), x: region(is, float),

 y: region(is, float), a: float)
where reads(x, y), writes(y)
do
 for i in is do
 y[i] += a*x[i]
 end
end

December 7, 2015 34
http://legion.stanford.edu

Problem #2: Partitioning

 Creation of partitions is hard to fully distribute
  Inherent in the original design
  Deal-breaker for some applications

 Solution
  Design a new partitioning system
  More concise and much higher performance

December 7, 2015 35
http://legion.stanford.edu

Problem #3: Mapping

 Mapping interface is at the wrong level of abstraction
  User has to say “do exactly this”
  Much better would be “do at least this”
  Or “do at most this”

 Solution
  A new constraint-based mapper interface

December 7, 2015 36
http://legion.stanford.edu

Problem #4: I/O

 Must be able to
  Read/write files
  Produced by other applications
  In parallel

 Solution
  A new I/O subsystem
  Understands how to interpret distributed file formats as
partitioned regions

December 7, 2015 37
http://legion.stanford.edu

Problem #5: Breaking Changes

 More developers + more users
  Users getting blocked by research-level software practices

  Introduce more disciplined development
  Clean-up, rationalization of the repository
  Investing in testing infrastructure
  Including the mundane and the high-end

December 7, 2015 38
http://legion.stanford.edu

Today’s Talks

 Regent (Elliott)
 Partitioning (Sean)
 Mapping (Mike)
  I/O (Zhihao)
 Debugging & Profiling (Wonchan)

 Application walkthrough (Wonchan)
 User experiences (Galen, Steve, Hemanth, Philippe)

December 7, 2015 39
http://legion.stanford.edu

More To Come

 These are not the only changes/features coming

 More at the end of the day

December 7, 2015 40
http://legion.stanford.edu

Questions?

