N
> I./ojsAIamos

NATIONAL LABORATORY

New Mapping Interface

Mike Bauer
NVIDIA Research

December 7, 2015 http://legion.stanford.edu



Legion
Program

N

@ Scheduling is hard

AAAAAAAAAAAAAAAA

Legion
Mapper

N

@ Lots of runtimes have heuristics
@ What do you do when they are wrong?

@ Legion mapping interface exposes all these decisions
@ Customize decisions/heuristics for applications + machines

December 7, 2015

http://legion.stanford.edu 2



Old Mapping Interface

Legion
Mapper

N\

N

—)
» Los Alamos

NATIONAL LABORATORY

~
’M”‘zf,)* >

2=

@ Let’s be honest: the current interface is not clean

@ There are good reasons for this:
@ No one had ever designed a dynamic one before
@ We had no idea what we really wanted

@ Result: evolutionary interface

@ No coherence in the design

December 7, 2015 http://legion.stanford.edu

NVIDIA.



N
> IEAIamos

NATIONAL LABORATORY

New Mapping Interface

& EST.1943
~ < NVIDIA
N o

N

Legion
Mapper

@ We now have some experience writing mappers
@ We know (mostly) what we want

@ Time for a new interface with a coherent design

December 7, 2015 http://legion.stanford.edu



N
> I.?sAIamos

NATIONAL LABORATORY

Mapper Call Format

struct MapTaskInput {

<ANVIDIA.

}i
struct MapTaskOutput ({

}i

virtual void map task(const Task &task,
const MapTaskInput &input,

MapTaskOutput &output) = 0;

@ Most mapper calls have three arguments
@ Reference to the operation (task, copy, inline mapping, etc)

@ Input argument struct
@ Output argument struct

@ Clear delineation of inputs and outputs

@ Extensible: can easily add new parameters

December 7, 2015 http://legion.stanford.edu



N
> IEAIamos

NATIONAL LABORATORY

Physical Instances
@ANVIDIA.

@ Old mapper based around memories

@ std::vector<Memory> target ranking;
@ This was alright before logical regions had fields

@ New mapper based around physical instances

@ std::vector<PhysicalInstance> chosen instances;
@ Give explicit names to physical instances
@ No more guessing what the runtime does

@ Consequences:
@ New way of managing creation/deletion of physical instances
@ New way of mapping tasks

December 7, 2015 http://legion.stanford.edu



Instance Management

@ Mappers can hold -

references to instances
@ Have names for instances
@ Prevent de-allocation

= e e ==

@ Mappers can request
instances be reclaimed

@ For when memories are full

@ Mapper call to rank
instances that are ready
for deletion

Today’s Policy

/A
° IRAIamos

NATIONAL LABORATORY

@ANVIDIA.

Pending or
Executing
Task

Valid
Data

Mapper
Reference

Physical Instance

December 7, 2015 http://legion.stanford.edu




Specifying Data Layout

@ Currently: Legion is
minimally aware of layout

@ Blocking factor: describe
density of fields

@ Two problems:

™

@ Not captured as properties

@ Need more expressiveness

December 7, 2015

Insufficient for describing
all interesting data layouts

of task variants

http://legion.stanford.edu

N
> IEAIamos

NATIONAL LABORATORY

& EST.1943
<ANVIDIA
AN\ W

Blocking Factor=1
Array-of-structs (AOS)

Blocking Factor=N
Struct-of-arrays (SOA)

Blocking Factor=2
Hybrid



Layout Constraint Language

@ A small set-constraint language

@ Can
(&)

© © © © ¢ ©

December 7, 2015

describe the following:
Dimension ordering

Al

AAAAAAAAAAAAAAAA

Field ordering AOS, C-order
Sub-dimensions for tiling
Alignment
Field offsets SOA, Fortran-order
Memory kinds
2-D Slices
HER

http://legion.stanford.edu



» Los Alamos

NATIONAL LABORATORY

Layout Constraints Example

5P SANVIDIA.

z Task Machine
2-D stencil CPU w/ AVX
Two fields: A+ B 16 KB L1 cache
Y Fields are 8 bytes
- /' mner X =32 327328 bytes 2fields = 16 KB
Constraints

split(X, 32)

split(Y, 32)
L2, AHEEEE
inner_Y < fields
A<B
fields <Z

Z < outer_X
outer_X < outer_Y
align(inner_X, 32-bytes) Why bother?

Legion DMA code automates data transformation
10

December 7, 2015 http://legion.stanford.edu



Satisfying Region Requirements

/A
> IRAIamos

NATIONAL LABORATORY

@ANVIDIA.

@ Can satisfy region requirements with multiple instances
@ Today: only one instance per region requirement

@ Reduce the number of unnecessary copies

Task t1: Region R, Field A
]

Today:
Make new instance
Issue copies

December 7, 2015

Task t2: Region R, Field B
]

Copy

Copy

Task t3: Region R, Fields A, B

Only works with SOA layouts
http://legion.stanford.edu

Tomorrow:
Re-use instances
No copies

1"



/A
° IRAIamos

NATIONAL LABORATORY

Satisfying Region Requirements

@ANVIDIA.

@ Map multiple region requirements to the same instance
@ Useful for pointers of type ptr(r1+r2+...)
@ No need for conditional statements on pointer dereferences

Too Slow!

¢ ptr(r1+r2) ~
‘ - cast<r1>
derefe '

y > else

Solution: put them in a big instance that is the union of r1+r2

*(ptr(r1+r2))

How do we guarantee correctness?

December 7, 2015 http://legion.stanford.edu "



AAAAAAAAAAAAAAAAAA

EST.1943
. VIDI
< NVIDIA.

Task Variant Registration

@ Need set constraint language for tasks too
@ Co-location constraints (regions mapped to the same inst)
@ Processor ISA (x86, Power, ARM, PTX, ...)
@ Resource constrains (cache sizes, registers, ...)

@ New task variant registration API
@ Specify all constraints on task variant
@ Specify layout constraints on all region requirements

@ Support for dynamic task variant registration
@ Anticipating DLLs and JIT

December 7, 2015 http://legion.stanford.edu h



N
> IEAIamos

NATIONAL LABORATORY

NVIDIA.

Mapping Tasks

@ Mapping tasks is now a little different

@ Mapper picks:
@ Processor on which to run
@ Instance(s) for all region requirements

Mapper picks
task variant

Mapper is lazy:
doesn’t pick

Correctness is quaranteed

Runtime verifies Runtime picks variant
all constraints with most closely
are satisfied satisfied constraints

What if it can’t find one?

14
December 7, 2015 http://legion.stanford.edu



N
> L?s Alamos

NATIONAL LABORATORY

Task Generators

‘@I NVIDIA.
@ What if we can’t find a satisfactory variant?

@ Today: mapping failure -> retry

@ Better answer: make the right variant
@ Task Variant Generators:

@ A function invoked by the runtime to generate a task variant
@ One registered for each kind of task (with optional static data)

4 N New Task Variant
Chosen Processor

Task Variant Constraints
Chosen Instances

(+ Layout constraints) g . Instance Layout Constraints
Constraints dictate reuse

A Generic Interface for Dynamic Compilation with Any Compiler

15
December 7, 2015 http://legion.stanford.edu



N
> [c?sAIamos

NATIONAL LABORATORY

Dealing with Close Operations
= @ NVIDIA

@ Close operations move
data between partitions

@ Automatically inserted by
the runtime where needed

@ Normally transparent

@ Except: rank_copy_targets
@ The most misunderstood

and feared mapper call Close this ... SO we can
PP partition... open this one
@ Create physical instance(s)
for close operations What if ‘N’ is really big and
@ Now gone! we don’t want to make a

physical instance?

@ Replaced by map close(...)

December 7, 2015 16

http://legion.stanford.edu



Composite Instances

@ Perform close without
building a big instance

@ Create composite instance
@ Snapshot of region tree
@ Capture existing instances

@ Issue minimal copies from
existing instances

@ Legion automatically
performs intersection tests

@ Memoizes results

N
> IEAIamos

NATIONAL LABORATORY

EST.1943
<SANVIDIA
N ._-::'“4 e

! !

Close this ... SO we can
partition... use this region

Can use this today:
return ‘true’ from

rank_copy_targets

17

December 7, 2015 http://legion.stanford.edu



N
> IEAIamos

NATIONAL LABORATORY

Manipulating Dependence Graphs

@ Legion builds a dependence graph internally
@ Discovers all the parallelism possible

@ How much is too much?
@ It depends
@ Make it a mapper decision

@ Allow mapper to manipulate the dependence graph

18
December 7, 2015 http://legion.stanford.edu



> Los Alamos

NATIONAL LABORATORY

Fusing Tasks .
‘< NVIDIA.

Fuse Dependent Tasks for Locality
@ ldea: let the mapper

fuse tasks together

@ Fusion: run tasks
consecutively
@ Leverage locality
@ Amortize analysis

costs
. Task
@ Specialize by the . s .
kind of machine and Fuse Independent Tasks for Reduced Analysis
graph shape

v

Task Task

December 7, 2015 http://legion.stanford.edu

19



Replicating Tasks

(—j SANVIDIA.

@ Replicate tasks to reduce communication
@ (or parallelize it)

@ Works both within nodes and across nodes
From S3D (intra-node) From Multigrid (inter-node)

Coarse stages
of v-cycle

calc_ydiff_flux

calc_ydiff_flux calc_ydiff_flux

calc_species calc_tau

20
December 7, 2015 http://legion.stanford.edu



/A
IRAIamos

AAAAAAAAAAAAAAAAAA

—~. @A NVIDIA.

A New Default Mapper

A new mapper interface requires...

... a hew default mapper implementation

@ Better heuristics for management of data
@ Better load balancing algorithms

@ More generalized algorithms for constructing mappers

21
December 7, 2015 http://legion.stanford.edu



A
° IEAIamos

AAAAAAAAAAAAAAAAAA

Bishop Mapping Language

Y SANVIDIA.

C++ mapping interface is still verbose

Bishop: a language for mapping

N

Bishop Bishop ;| Legion
Program Mapper

Compiler

Prototype version part of tomorrow’s exercise

December 7, 2015 http://legion.stanford.edu *



AAAAAAAAAAAAAAAAAA

EST.1943
@ANVIDIA

Open Mapper Questions

The mapper interface is still open for modifications

@ What are the best ways to manage deferred execution?
@ How do we compose multiple mappers?

@ What are the best practices for mapper data structures?

@ What are good abstractions for mapper construction?

23
December 7, 2015 http://legion.stanford.edu



