
December 7, 2015 1
http://legion.stanford.edu

Mike Bauer
NVIDIA Research

New Mapping Interface

December 7, 2015 2
http://legion.stanford.edu

Why Have A Mapping Interface?

 Scheduling is hard

 Lots of runtimes have heuristics
  What do you do when they are wrong?

 Legion mapping interface exposes all these decisions
  Customize decisions/heuristics for applications + machines

Legion
Program

Legion Legion
Mapper

December 7, 2015 3
http://legion.stanford.edu

Old Mapping Interface

 Let’s be honest: the current interface is not clean

 There are good reasons for this:
  No one had ever designed a dynamic one before
  We had no idea what we really wanted

 Result: evolutionary interface
  No coherence in the design

Legion
Mapper

December 7, 2015 4
http://legion.stanford.edu

New Mapping Interface

 We now have some experience writing mappers

 We know (mostly) what we want

 Time for a new interface with a coherent design

Legion
Mapper

December 7, 2015 5
http://legion.stanford.edu

Mapper Call Format

 Most mapper calls have three arguments
  Reference to the operation (task, copy, inline mapping, etc)
  Input argument struct
  Output argument struct

 Clear delineation of inputs and outputs

 Extensible: can easily add new parameters

struct MapTaskInput {
 …
};
struct MapTaskOutput {  
 …  
};
virtual void map_task(const Task &task,

 const MapTaskInput &input,
 MapTaskOutput &output) = 0;

December 7, 2015 6
http://legion.stanford.edu

Physical Instances

 Old mapper based around memories
std::vector<Memory> target_ranking;
  This was alright before logical regions had fields

 New mapper based around physical instances
std::vector<PhysicalInstance> chosen_instances;
  Give explicit names to physical instances
  No more guessing what the runtime does

 Consequences:
  New way of managing creation/deletion of physical instances
  New way of mapping tasks

December 7, 2015 7
http://legion.stanford.edu

Instance Management

 Mappers can hold
references to instances

  Have names for instances
  Prevent de-allocation

 Mappers can request
instances be reclaimed

  For when memories are full

 Mapper call to rank
instances that are ready
for deletion

Physical Instance

Pending or
Executing

Task

Valid
Data

Mapper
Reference

Today’s Policy

December 7, 2015 8
http://legion.stanford.edu

Specifying Data Layout

 Currently: Legion is
minimally aware of layout

 Blocking factor: describe
density of fields

 Two problems:
  Insufficient for describing
all interesting data layouts
  Not captured as properties
of task variants

 Need more expressiveness

Blocking Factor=1
Array-of-structs (AOS)

Blocking Factor=N
Struct-of-arrays (SOA)

Blocking Factor=2
Hybrid

December 7, 2015 9
http://legion.stanford.edu

Layout Constraint Language

 A small set-constraint language

 Can describe the following:

  Dimension ordering
  Field ordering
  Sub-dimensions for tiling
  Alignment
  Field offsets
  Memory kinds
  …

2-D Slices

AOS, C-order

SOA, Fortran-order

December 7, 2015 10
http://legion.stanford.edu

Layout Constraints Example
Machine

CPU w/ AVX
16 KB L1 cache

Y

X

Z Task
2-D stencil

Two fields: A + B
Fields are 8 bytes

Constraints
split(X, 32)
split(Y, 32)

inner_X < inner_Y
inner_Y < fields

A < B
fields < Z

Z < outer_X
outer_X < outer_Y

align(inner_X, 32-bytes)

inner_Y = 32
inner_X = 32

32 * 32 * 8 bytes * 2 fields = 16 KB

…
Why bother?

Legion DMA code automates data transformation

December 7, 2015 11
http://legion.stanford.edu

Satisfying Region Requirements

 Can satisfy region requirements with multiple instances
  Today: only one instance per region requirement
  Reduce the number of unnecessary copies

Task t1: Region R, Field A Task t2: Region R, Field B

Task t3: Region R, Fields A, B Today:
Make new instance
Issue copies

Copy Copy

Tomorrow:
Re-use instances
No copies

Only works with SOA layouts

December 7, 2015 12
http://legion.stanford.edu

Satisfying Region Requirements

 Map multiple region requirements to the same instance
  Useful for pointers of type ptr(r1+r2+…)
  No need for conditional statements on pointer dereferences

ptr(r1+r2)
if (safe_cast<r1>(ptr))
 dereference in r1
else
 dereference in r2

Too Slow!

Solution: put them in a big instance that is the union of r1+r2

How do we guarantee correctness?

*(ptr(r1+r2))

December 7, 2015 13
http://legion.stanford.edu

Task Variant Registration

 Need set constraint language for tasks too
  Co-location constraints (regions mapped to the same inst)
  Processor ISA (x86, Power, ARM, PTX, …)
  Resource constrains (cache sizes, registers, …)

 New task variant registration API
  Specify all constraints on task variant
  Specify layout constraints on all region requirements

 Support for dynamic task variant registration
  Anticipating DLLs and JIT

December 7, 2015 14
http://legion.stanford.edu

Mapping Tasks

 Mapping tasks is now a little different

 Mapper picks:
  Processor on which to run
  Instance(s) for all region requirements

Mapper picks
task variant

Mapper is lazy:
doesn’t pick

Runtime verifies
all constraints
are satisfied

Runtime picks variant
with most closely

satisfied constraints

Correctness is guaranteed

What if it can’t find one?

December 7, 2015 15
http://legion.stanford.edu

Task Generators
 What if we can’t find a satisfactory variant?

  Today: mapping failure -> retry
  Better answer: make the right variant

 Task Variant Generators:
  A function invoked by the runtime to generate a task variant
  One registered for each kind of task (with optional static data)

Task Variant
Generator for

Task ‘X’

Chosen Processor

Chosen Instances
(+ Layout constraints)

New Task Variant

Task Variant Constraints

Instance Layout Constraints

Static Data AKA: intermediate
representation of the task

Constraints dictate reuse

A Generic Interface for Dynamic Compilation with Any Compiler

December 7, 2015 16
http://legion.stanford.edu

Dealing with Close Operations

 Close operations move
data between partitions

  Automatically inserted by
the runtime where needed
  Normally transparent

 Except: rank_copy_targets
  The most misunderstood
and feared mapper call
  Create physical instance(s)
for close operations
  Now gone!

 Replaced by map_close(…)

N

s1 sn … g1 gn …

Close this
partition…

… so we can
open this one

What if ‘N’ is really big and
we don’t want to make a

physical instance?

December 7, 2015 17
http://legion.stanford.edu

Composite Instances

 Perform close without
building a big instance

 Create composite instance

  Snapshot of region tree
  Capture existing instances

  Issue minimal copies from
existing instances

  Legion automatically
performs intersection tests
Memoizes results

N

Close this
partition…

… so we can
use this region

Can use this today:
return ‘true’ from

rank_copy_targets

December 7, 2015 18
http://legion.stanford.edu

Manipulating Dependence Graphs
 Legion builds a dependence graph internally

  Discovers all the parallelism possible

 How much is too much?
  It depends
  Make it a mapper decision

 Allow mapper to manipulate the dependence graph

December 7, 2015 19
http://legion.stanford.edu

Fusing Tasks

  Idea: let the mapper
fuse tasks together

 Fusion: run tasks
consecutively

  Leverage locality
  Amortize analysis
costs

 Specialize by the
kind of machine and
graph shape

Task

Task

Fuse Dependent Tasks for Locality

Task

Task

Fuse Independent Tasks for Locality

Task

Task Task

Task

Task Task

Fuse Independent Tasks for Reduced Analysis

Task Task Task Task

December 7, 2015 20
http://legion.stanford.edu

Replicating Tasks
 Replicate tasks to reduce communication

  (or parallelize it)

 Works both within nodes and across nodes
From S3D (intra-node) From Multigrid (inter-node)

calc_ydiff_flux

calc_species calc_tau

CPU GPU

calc_ydiff_flux

calc_species

calc_ydiff_flux

calc_tau

Coarse stages
of v-cycle

Node Node Node

December 7, 2015 21
http://legion.stanford.edu

A New Default Mapper

A new mapper interface requires...

… a new default mapper implementation

 Better heuristics for management of data

 Better load balancing algorithms

 More generalized algorithms for constructing mappers

December 7, 2015 22
http://legion.stanford.edu

Bishop Mapping Language

C++ mapping interface is still verbose

Bishop: a language for mapping

Prototype version part of tomorrow’s exercise

Legion
Mapper

Bishop
Program

Bishop
Compiler

December 7, 2015 23
http://legion.stanford.edu

Open Mapper Questions

The mapper interface is still open for modifications

 What are the best ways to manage deferred execution?

 How do we compose multiple mappers?

 What are the best practices for mapper data structures?

 What are good abstractions for mapper construction?

