
December 7, 2015 1
http://legion.stanford.edu

Zhihao Jia

Integrating External Resources into
Legion

December 7, 2015 2
http://legion.stanford.edu

Motivation

 Legion assumes a “closed world”

 But, applications need to interact with external data

  e.g., files, checkpoints, databases

 Challenge
  external interactions are expensive: the data is often huge

December 7, 2015 3
http://legion.stanford.edu

Motivation

 Original solution
  Ask users to manage external I/O at application level
  Access external data within Legion tasks

 Performance issues
  Block computing threads, hard to hide I/O latency, hard to
control resource utilization

 Correctness issues
  Manually control external data consistency at application
level

December 7, 2015 4
http://legion.stanford.edu

Approach

 Define semantics for external resources in Legion
  Correctness: Legion guarantees consistency and
preservation of dependencies
  Performance: runtime automatically performs external I/O
optimizations

  Idea: Integrate external resources by mapping them
to regions => attach operation

December 7, 2015 5
http://legion.stanford.edu

Attach Operation

 Attach external resource to a region
  Normal files, formatted files (HDF5), opaque data
structures

 PhysicalRegion attach_hdf(
 const char *filename,
 LogicalRegion lr,
 const std::map<FieldID,const char*> &fieldmap,
 AccessMode mode);

IndexSpace ó HDF DataSpace

 Fields ó
HDF Datasets

December 7, 2015 6
http://legion.stanford.edu

Attach Operation

 Semantics
  Invalidate existing physical instance of lr
  Maps lr to a new physical instance that represents
external data (no external I/O)

Application

Legion
Runtime

Region lr

Instance 1

Instance 2

Node 1

Instance 3

Node 2

December 7, 2015 7
http://legion.stanford.edu

Attach Operation

Application

Legion
Runtime

Region lr

Instance 1

Instance 2

Node 1

Instance 3

Node 2

Instance 4

External
Resource

Attach

Attach

 Semantics
  Invalidate existing physical instance of lr
  Maps lr to a new physical instance that represents
external data (no external I/O)

December 7, 2015 8
http://legion.stanford.edu

Attach Operation

 Attached region accessed using simultaneous
coherence

  Different tasks access the region simultaneously
  Requires that all tasks must use the only valid physical
instance

 Copy restriction
  Simultaneous coherence implies tasks cannot create local
copies
  May result in inefficient memory accesses

 To address inefficiency => acquire/release

December 7, 2015 9
http://legion.stanford.edu

Acquire/Release

 Mechanism to notify Legion runtime when it is safe
to allow local copies

 Acquire removes copy restriction
  Can create a copy in any memory

 Release restores copy restriction
  Invalidates all existing local copies
  Flushes dirty data back to external resource

December 7, 2015 10
http://legion.stanford.edu

Acquire/Release Example

Application

Legion
Runtime

Region r

Node 1 Node 2

Ext Inst

External
Resource

Local Inst Local Inst
Copy

Task Task

Acquire

Release

Flush

December 7, 2015 11
http://legion.stanford.edu

More on Attach Semantics

 Attach to in-memory opaque data structures
  External data comes from other applications
  Legion may not understand the data format

 User could attach opaque data structures to regions

  Field holds pointers/refs to the opaque data structures

Index space

Field

December 7, 2015 12
http://legion.stanford.edu

Custom SerDes

 Bit-wise copy no longer work
 Legion requires custom SerDes methods for fields
requiring non-trivial copies
 Users define a class with SerDes methods

SerDes registration is similar to reduction operation

 Specify SerDes methods when allocating fields

class SerDesObject {
 static size_t serialized_size(const FIELD_TYPE& val);
 static size_t serialize(const FIELD_TYPE& val, void *buffer);
 static size_t deserialize(FIELD_TYPE& val, const void *buffer);
 static void destroy(FIELD_TYPE& val);
}

runtime->register_custom_serdes_op<SerDesObject>(serdes_id);

allocate_field(sizeof(FIELD_TYPE), field_id, serdes_id);

December 7, 2015 13
http://legion.stanford.edu

Optimization: Deferred Execution

 Legion runtime manages/reschedules external I/O
  maximize resource utilization
  overlap external I/O with computation

 Matrix multiplication
  Load large input matrices from files on disk

Figure 1. Matrix multiplication performance. (For evaluating
deferred execution optimization)

December 7, 2015 14
http://legion.stanford.edu

Optimization: Reduce Data
Transfer

Application
Region r

External Inst

Node 1

Memory	

Run+me	

Local Inst

Node 2

Memory	

Run+me	

Task 1

Task 2

Copy

Task 3

up-to-date w/
better performance

December 7, 2015 15
http://legion.stanford.edu

Optimization: Reduce Data
Transfer
 Distributed graph rendering

  Each node renders a portion of the screen
  Communication: copy physical objects between nodes

December 7, 2015 16
http://legion.stanford.edu

Optimization: Write-After-Read

Region r

External Inst

Node 1

Memory	

Run+me	

Local Inst

Node 2

Memory	

Run+me	

Task (RW)

Task (RO)

Copy

Flush

Task (RW)

Application

Acquire

Release

December 7, 2015 17
http://legion.stanford.edu

 Database benchmark
  Perform read queries and read/write queries on external
databases on disk

Optimization: Write-After-Read

December 7, 2015 18
http://legion.stanford.edu

S3D

 A production combustion simulation
 Checkpoint after fixed time steps
 Legion implementation is 7X faster than Fortran

30 76.5

11.5

14.8

7.1

4.6

2.1
1.1

2.7 2.7 2.9 3.3

December 7, 2015 19
http://legion.stanford.edu

Questions

