A
° IEAIamos

NATIONAL LABORATORY

Y ANVIDIA.

MiniAero

Wonchan Lee

December 7, 2015 http://legion.stanford.edu

N
> IEAIamos

NATIONAL LABORATORY

EST.1943
<2 NVIDIA
\ e
. - ®

MiniAero

@ Fluid dynamics mini-app that uses the Runge-Kutta forth-
order time marching scheme

@ Ported to both Legion C++ API (Sandia) and Regent (Stanford)
@ Initial versions do not scale up well:

Each node is becoming less efficient as the node count is growing

400
© Legion C++

w
(=3
o

Throughput per node (KCells/s)
S
o

-
(=]
o

0
1 2 4 8

Number of nodes

Weak-scaling graph with 256K cells per node

December 7, 2015 http://legion.stanford.edu

» Los Alamos
NATIONAL LABORATORY
EST.1943

| @A NVIDIA.

Sources of Inefficiency

@ Having a single control task launch tasks on all nodes
@ Adds delay between tasks being launched

analysis cost launch delay

e me
N\

app thread

runtime thread

node O

app thread
>

app thread

runtime thread

hode 1
===

I

app thread
>

—

app thread

-

runtime thread

node 2

app thread
>

3
December 7, 2015 http://legion.stanford.edu

Sources of Inefficiency

@ Having a single control task launch tasks on all nodes
@ Adds delay between tasks being launched

utility Proces: 222000
utility Bx8eeeee8l
eeeeeeeeeeeeeeeeee
aaaaaaaaaaaaaaaaaaa
CPU Processor 0x88080084
CPU Processor 0x80080085
rrrrrrrrrrrrrr 800008/
CPU Processor 8x80000087
aaaaaaaaaaaaaaaaaaa
PPPPPPPPPPPPPPPPP 209

Utility Processor @xsesesesl
CPU Processor 9x88880082
CPU Processor 0x80880083
PU 6800084
aaaaaaaaaaaaaaaaaaaa
CPU Processor 9x88880086
aaaaaaaaaaaaaaaaaaaa
CPU Processor 0x80800088
CPU Processor 8x80800089

December 7, 2015

launch delay

>,

|
|
|
I
|

» Los Alamos

NATIONAL LABORATORY

EST.1943

‘ANVIDIA.

Legion MiniAero on two nodes

comppte_face_flux UID=1081 total=210228 us start=3359857 us stop=3570085 us

http://legion.stanford.edu

Sources of Inefficiency

N
> IEAIamos

NATIONAL LABORATORY

EST.1943
<ANVIDIA

4

i

@ Using different partitions of the same region can effectively

var
var
var

for
for

serialize tasks

r = region(...) region tree
partition(disjoint,r,...)
partition(aliased,r,...)

©
O
I

©
>
]

i=0,2: F(pD[i]) -- writes pD
i=0,2: G(pA[i]) -- reads PpA

December 7, 2015 http://legion.stanford.edu

N
> IEAIamos

NATIONAL LABORATORY

EST.1943
N
SANVIDIA
Q"'%‘:_’_"fi-:“‘" ®

Sources of Inefficiency

@ Using different partitions of the same region can effectively
serialize tasks

var r = region(...) region tree
var pD = par‘t:.Lt}on(d1§301nt,r*, ces) propagate "
var pA = partition(aliased,r,...) updates/'

*

for i = 0,2: F(pD[i]) -- writes pD pD
for i = 0,2: G(pA[i]) -- reads pA

pD[@] pA[o@] | | pA[1]

@ To start G, runtime waits for all updates of F on r to be visible to
PA[1]

@ The runtime can minimize the underlying data movement between
instances but cannot avoid the serialization

December 7, 2015 http://legion.stanford.edu

» Los Alamos

NATIONAL LABORATORY

Sources of Inefficiency

‘<A NVIDIA.

@ Using different partitions of the same region can effectively
serialize tasks
@ Tasks in MiniAero read cells from other blocks on the border

disjoint partition for private cells

cell cell cell

cell
cell cell cell cell

cell cell cell cell . .

aliased partition for ghost cells
cell cell cell cell
cell cell cell cell

December 7, 2015 http://legion.stanford.edu

4x2x1 mesh

Tefe]=

2]]

7

/O
> I.?sAIamos

NATIONAL LABORATORY

SANVIDIA

Sources of Inefficiency

@ Using different partitions of the same region can effectively
serialize tasks

@ Tasks in MiniAero read cells from other blocks on the border
@ Updating private cells makes the next task accessing ghost cells wait

var cells = region(...)

var pcells = partition(disjoint, cells, ...)
var pghost = partition(aliased, cells, ...)
for i = 0,4:
compute_limiter(pcells[i], pghost[i], pfaces[i]) -- writes pcells[i]
for i = 0,4:

compute_face flux(pcells[i], pghost[i], pfaces[i]) -- reads pghosts[i]

December 7, 2015 http://legion.stanford.edu

- Los Alamos

NATIONAL LABORATORY

EST.1943

@ANVIDIA.

Sources of Inefficiency

@ Using different partitions of the same region can effectively
serialize tasks
@ Tasks in MiniAero read cells from other blocks on the border
@ Updating private cells makes the next task accessing ghost cells wait

Legion MiniAero on one node

CPU Processor 9x8009@882

CPU Processor 9x800908e3

CPU Processor @x800d0ee4

the last

task blocked the first compute_face_flux task

CPU Processor 9x80809@8e5

CPU Processor 9x800908e6

CPU Processor 9x800908e7

CPU Processor ©x8009@8es |

CPU Processor 9x800908e9 |

December 7, 2015 http://legion.stanford.edu

» Los Alamos
NATIONAL LABORATORY
EST.1943

‘<A NVIDIA.

Solution: SPMD, Legion Style

@ Have multiple control tasks launch tasks on their own node
@ Lower latency from analysis cost

smaller analysis cost time
J

Vi

>

app thread

runtime thread

app thread
>

app thread

runtime thread

node 1

app thread
>

app thread

runtime thread

node 2

app thread
>

10
December 7, 2015 http://legion.stanford.edu

» Los Alamos
NATIONAL LABORATORY
EST.1943

‘<A NVIDIA.

Solution: SPMD, Legion Style

@ Have multiple control tasks launch tasks on their own node

@ Lower latency from analysis cost
SPMD-ified Legion MiniAero on two nodes

Sttty rocessor axsoa000e0 LILLI.LEH__J_L ! ! " | [i | i

Utility Pre 080820020 _LL_*_I_-_- l runtime barEIy runs anaIVSis 1
once control tasks launch all tasks

T

¢ 2 8 % 8§ & & & g
3 3 3 3 3 3 3 3 B

o ¥
2 ¢
o

» Los Alamos
NATIONAL LABORATORY
EST.1943

‘<A NVIDIA.

Solution: SPMD, Legion Style

Q

@ Have tasks locally share their updates with each other

>
app thread

runtime thread

app thread>
app thread
slower tasks no longer stop the other tasks
from communicating with each other runtime thread
app thread>
app thread

runtime thread

app thread

>
app thread

runtime thread

A\
N —

12

December 7, 2015 http://legion.stanford.edu

N
> IEAIamos

NATIONAL LABORATORY

EST.1943
<~ NVIDIA
S o

Solution: SPMD, Legion Style

™
v
@ Not necessarily manual

@ Planned automatic SPMD transformation in the Regent compiler
@ Planned automatic SPMD optimization in the Legion runtime

December 7, 2015 http://legion.stanford.edu h

N
> I.?sAIamos

NATIONAL LABORATORY

Solution: SPMD, Legion Style

<X NVIDIA.

A

v

@ Manual SPMD-ification is always an option
@ Can be done relatively easily for simple cases
@ Regent provides a cleaner syntax for hand-written SPMD-style code

@ Good exercise to understand transformations that the future
compiler and runtime will provide
=>» Let’s talk about how I’ve transformed MiniAero

December 7, 2015 http://legion.stanford.edu h

» Los Alamos
NATIONAL LABORATORY
EST.1943

‘<A NVIDIA.

MiniAero in Legion’s SPMD Style

@ Makes ghost regions be their own root regions

explicit regions for ghost cells

aliased partition for ghost cells

cell cell
cell cell

cell cell

=

cell cell

15

December 7, 2015 http://legion.stanford.edu

N
> IEAIamos

NATIONAL LABORATORY

@ANVIDIA.

MiniAero in Legion’s SPMD Style

A

@ Tell runtime to run simultaneously a list of control tasks

must_epoch
spmd_control(pcells[@], y ees
spmd_control(pcells[1], rghostl, ...
spmd_control(pcells[2], rghost2, ...
spmd_control(pcells[3], rghost3, ...

AR S—

owned ghost
cells cells

N N N

explicit ghost regions

December 7, 2015 http://legion.stanford.edu b

MiniAero in Legion’s SPMD Style

> Los Alamos
: .J NATIONA:;-:T;::;)RATORY
(—)@ NVIDIA.

@ Tell runtime to run simultaneously a list of control tasks

@ Makes ghost regions be separate regions explicitly

@ Control tasks should copy changes from their owned cells to

ghost regions
pcells[0] rghostl

i
—»

| o=

rghost2

17
December 7, 2015 http://legion.stanford.edu

» Los Alamos

NATIONAL LABORATORY

5P SANVIDIA.

MiniAero in Legion’s SPMD Style

v
v

@ Control tasks should copy changes from their owned cells to
ghost regions

must_epoch
spmd_control(pcells[@], , rghostl, rghost2, ...
spmd_control(pcells[1], rghostl, , rghost3, ...
spmd_control(pcells[2], rghost2, , rghost3, ...
spmd_control(pcells[3], rghost3, rghostl, rghost2, ...
end

N o N

owned ghost neighbors cells to
cells cells copy changes to

should see one instance of the same region
=» simultaneous coherence!

December 7, 2015 http://legion.stanford.edu b

/O
> I.?sAIamos

NATIONAL LABORATORY

SANVIDIA

MiniAero in Legion’s SPMD Style

v/

™

@ Control tasks should copy changes from their owned cells to
ghost regions

task spmd control(rcells : region(...), rghost : region(...),
rneighborl : region(...), rneighbor2 : region(...),
e)

where reads exclusive(cells), reads simultaneous(rghost)
reads writes simultaneous(rneighborl, rneighbor2)

end

December 7, 2015 19

http://legion.stanford.edu

» Los Alamos

NATIONAL LABORATORY

5P SANVIDIA.

MiniAero in Legion’s SPMD Style

v
v

@ Control tasks should copy changes from their owned cells to
ghost regions

rghost
rneighboril rneighbor2

simultaneous(rghost)
simultaneous(rneighborl, rneighbor2)

tell runtime to map these regions simultaneously

December 7, 2015 20

http://legion.stanford.edu

» Los Alamos
NATIONAL LABORATORY
EST.1943

‘ANVIDIA.

Pushing Updates to Ghost Regions

@ Tasks and copies must be synchronized to avoid races

task spmd control(...) where ...
do

compute_limiter(rcells, rghost, rfaces)
(rcells, rneighborl) -- data race!

end

>

compute_limiter app thread

runtime thread

node 0

ghost 1 \ rneighborl (= ghost 2) still being used =» data race! region insta;ces

region instances

|(-

ghost 2
AEREXAREREXEA’

compute_limiter app thread

node 1

21
December 7, 2015 http://legion.stanford.edu

Phase Barriers for Synchronization

» Los Alamos

NATIONAL LABORATORY

5 SANVIDIA

@ Legion provides phase barriers, a light-weight mechanism to
synchronize between operations

@ Phase barriers are not a global barrier, unlike MPI barriers

@ Each barrier can make progress at a different rate

node 0 TO

7/ 10

>
app thread
pp >

. phase 3 phase barrier between T0 and T1

1 >

e\ 77 cop thecd
app thread

node 2 PP >

node 3

phase barrier between T2 and T3

>
app thread
pp >

—_— await

December 7, 2015

—3 arrive

http://legion.stanford.edu

22

» Los Alamos
NATIONAL LABORATORY
EST.1943

‘ANVIDIA.

Synchronizing Tasks and Copies

@ Each control task is responsible for synchronizing its subtasks

task spmd control(...) where ...
do

compute_limiter(rcells, rghost, rfaces) arrives(pb_g free)
copy(rcells, rneighborl) awaits(pb_nl_free)

end

>
await rneighborl (= ghost 2) becoming free app thread

/

runtime thread

i

region instances

node 0

BMAEAXAERXEEEXXXEXN’

compute_limiter arrive on the barrier to trigger the copy app thread}

node 1

23
December 7, 2015 http://legion.stanford.edu

» Los Alamos
NATIONAL LABORATORY
EST.1943

‘ANVIDIA.

Synchronizing Tasks and Copies

@ Each control task is responsible for synchronizing its subtasks

task spmd control(...) where ...
do

compute limiter(rcells, rghost, rfaces) arrives(pb g free)
copy(rcells, rneighborl) awaits(pb_nl_free) arrives(pb_nl_ready)
compute_ face flux(rcells, rghost, rfaces) awaits(pb_g ready)

end

>
S app thread
Q
8 arrive to trigger the task runtime thread
C

\ when rneighborl is ready

ghost 1 region insta;ces

ghost 2 ghost 2 region instances

; v ¥y v vV bbb
compute_limiter /// compute_face_flux app thread 5

node 1

*.i

await ghost 2 becoming ready

24
December 7, 2015 http://legion.stanford.edu

- Los Alamos

NATIONAL LABORATORY

Relaxing Simultaneous Constraints

5 SANVIDIA

@ Simultaneous coherence enforces that all tasks use the same
region instance
@ Acquire and release operations relax that constraint

@ Useful when the task needs to copy the instance somewhere else
(e.g. GPU framebuffer memory)

app thread on CPU

l*//// T app thread on GPU

\ runtime thread
region instances on
system memory

\\\ region instances on
once ghost 1 is acquired, framebuffer >

runtime can make copies

acquire

node 0

December 7, 2015 http://legion.stanford.edu

N
> I.?sAIamos

NATIONAL LABORATORY

<2 NVIDIA.

Programming Experience

@ Started with the initial C++ port
@ Regent support for SPMD-style programs wasn’t ready yet
@ First correct version in 2 weeks
@ A few more weeks to optimize and tune
@ Would have been quicker with Regent

@ Legion Spy was helpful in tracking down synchronization bugs
@ Currently, this is the price of managing tasks manually

@ Event graphs show which tasks are depending on which phases of
barriers

@ Physical dependence analysis shows some missing dependencies if
tasks are synchronized incorrectly

December 7, 2015 http://legion.stanford.edu *

N
> IEAIamos

NATIONAL LABORATORY

Preliminary Performance Study

EST.1943
.
:

@ Weak scaling experiments
@ 256K cells per node
@ Certainty Cluster

@ Two target versions
@ Initial version without SPMD
@ Manually SPMD-ified version (one control task per processor)

27
December 7, 2015 http://legion.stanford.edu

- Los Alamos

NATIONAL LABORATORY

Weak Scaling Graph

5 SANVIDIA

@ SPMD version scales much better than the original

400
O Legion C++

% O Legion C++SPMD | 4
dropped
3« by 30%
g 1.
3
dropped g
by 97% -4
H
g
o
£ 100
N ____N

Number of nodes

December 7, 2015 http://legion.stanford.edu

28

N
> IEAIamos

NATIONAL LABORATORY

EST.1943
<2 NVIDIA
\ e
. - ®

Measuring Runtime Overhead

@ Commenting out task bodies
@ Runtime still issues all tasks with necessary copies
@ SPMD-style version has stable overhead (0.6s — 0.8s per timestep)

100
O Legion C++
Legion C++ SPMD

10

Average time per timestep (s)

1 2 4 8 16 32

Number of nodes

December 7, 2015 http://legion.stanford.edu ®

/O
> I.?sAIamos

NATIONAL LABORATORY

SANVIDIA.

Plans

@ SPMD-ification in Regent
@ Will be faster due to better leaf tasks in Regent
@ Manual SPMD-ification support is now available
@ Automatic SPMD-ification will become available soon

@ Comparing between various SPMD configurations

@ We can have M control tasks each of which manages N processors

@ More control tasks better amortizes analysis cost but has more
overhead due to partitioning

@ Fewer control tasks can reduce communication overhead but be less
adaptable to load imbalance

@ We'll explore with Regent’s automatic SPMD-ification

30
December 7, 2015 http://legion.stanford.edu

N
> I.?sAIamos

NATIONAL LABORATORY

Concluding Remarks

Y<Anvibia

@ Legion’s SPMD-style is a practical way to achieve high
scalability
@ MiniAero shows steady weak-scaling performance up to 32 nodes

@ SPMD style is not too difficult

@ Requires only the control task to be rewritten

@ Does require explicit programmer-managed synchronization
between control tasks

@ SPMD-style programming will become easier
@ Cleaner syntax for in Regent
@ Planned automatic SPMD transformation in the Regent compiler
@ Planned automatic SPMD optimization in the Legion runtime

December 7, 2015 http://legion.stanford.edu ¥

