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MiniAero

@ Fluid dynamics mini-app that uses the Runge-Kutta forth-
order time marching scheme

@ Ported to both Legion C++ API (Sandia) and Regent (Stanford)
@ Initial versions do not scale up well:

Each node is becoming less efficient as the node count is growing
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Weak-scaling graph with 256K cells per node
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Sources of Inefficiency

@ Having a single control task launch tasks on all nodes
@ Adds delay between tasks being launched

analysis cost  launch delay
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Sources of Inefficiency

@ Having a single control task launch tasks on all nodes
@ Adds delay between tasks being launched
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Legion MiniAero on two nodes

comppte_face_flux UID=1081 total=210228 us start=3359857 us stop=3570085 us
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@ Using different partitions of the same region can effectively

var
var
var

for
for

serialize tasks

r = region(...) region tree
partition(disjoint,r,...)
partition(aliased,r,...)

©
O
I

©
>
]

i=0,2: F(pD[i]) -- writes pD
i=0,2: G(pA[i]) -- reads PpA
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Sources of Inefficiency

@ Using different partitions of the same region can effectively
serialize tasks

var r = region(...) region tree
var pD = par‘t:.Lt}on(d1§301nt,r*, ces) propagate "
var pA = partition(aliased,r,...) updates/'

*

for i = 0,2: F(pD[i]) -- writes pD pD
for i = 0,2: G(pA[i]) -- reads pA

pD[@] pA[o@] | | pA[1]

@ To start G, runtime waits for all updates of F on r to be visible to
PA[1]

@ The runtime can minimize the underlying data movement between
instances but cannot avoid the serialization

December 7, 2015 http://legion.stanford.edu
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@ Using different partitions of the same region can effectively
serialize tasks
@ Tasks in MiniAero read cells from other blocks on the border

disjoint partition for private cells

cell cell cell

cell
cell cell cell cell

cell cell cell cell . .

aliased partition for ghost cells
cell cell cell cell
cell cell cell cell
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Sources of Inefficiency

@ Using different partitions of the same region can effectively
serialize tasks

@ Tasks in MiniAero read cells from other blocks on the border
@ Updating private cells makes the next task accessing ghost cells wait

var cells = region(...)

var pcells = partition(disjoint, cells, ...)
var pghost = partition(aliased, cells, ...)
for i = 0,4:
compute_limiter(pcells[i], pghost[i], pfaces[i]) -- writes pcells[i]
for i = 0,4:

compute_face flux(pcells[i], pghost[i], pfaces[i]) -- reads pghosts[i]

December 7, 2015 http://legion.stanford.edu
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Sources of Inefficiency

@ Using different partitions of the same region can effectively
serialize tasks
@ Tasks in MiniAero read cells from other blocks on the border
@ Updating private cells makes the next task accessing ghost cells wait

Legion MiniAero on one node

CPU Processor 9x8009@882

CPU Processor 9x800908e3

CPU Processor @x800d0ee4

the last

task blocked the first compute_face_flux task

CPU Processor 9x80809@8e5

CPU Processor 9x800908e6

CPU Processor 9x800908e7

CPU Processor ©x8009@8es |

CPU Processor 9x800908e9 |
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Solution: SPMD, Legion Style

@ Have multiple control tasks launch tasks on their own node
@ Lower latency from analysis cost

smaller analysis cost time
J

Vi
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app thread

runtime thread

app thread
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app thread

runtime thread
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app thread
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app thread

runtime thread

node 2

app thread
>
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Solution: SPMD, Legion Style

@ Have multiple control tasks launch tasks on their own node

@ Lower latency from analysis cost
SPMD-ified Legion MiniAero on two nodes
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Solution: SPMD, Legion Style

Q

@ Have tasks locally share their updates with each other

>
app thread

runtime thread

app thread>
app thread
slower tasks no longer stop the other tasks
from communicating with each other runtime thread
app thread>
app thread

runtime thread

app thread

>
app thread

runtime thread

A\
N —

12

December 7, 2015 http://legion.stanford.edu



N
> IEAIamos

NATIONAL LABORATORY

EST.1943
<~ NVIDIA
S o

Solution: SPMD, Legion Style

™
v
@ Not necessarily manual

@ Planned automatic SPMD transformation in the Regent compiler
@ Planned automatic SPMD optimization in the Legion runtime
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@ Manual SPMD-ification is always an option
@ Can be done relatively easily for simple cases
@ Regent provides a cleaner syntax for hand-written SPMD-style code

@ Good exercise to understand transformations that the future
compiler and runtime will provide
=>» Let’s talk about how I’ve transformed MiniAero
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MiniAero in Legion’s SPMD Style

@ Makes ghost regions be their own root regions

explicit regions for ghost cells

aliased partition for ghost cells

cell cell
cell cell

cell cell

=

cell cell

15
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MiniAero in Legion’s SPMD Style

A

@ Tell runtime to run simultaneously a list of control tasks

must_epoch
spmd_control(pcells[@], y ees
spmd_control(pcells[1], rghostl, ...
spmd_control(pcells[2], rghost2, ...
spmd_control(pcells[3], rghost3, ...

AR S—

owned ghost
cells cells

N N N

explicit ghost regions
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@ Tell runtime to run simultaneously a list of control tasks

@ Makes ghost regions be separate regions explicitly

@ Control tasks should copy changes from their owned cells to

ghost regions
pcells[0] rghostl

i
—»

| o=

rghost2
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MiniAero in Legion’s SPMD Style
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@ Control tasks should copy changes from their owned cells to
ghost regions

must_epoch
spmd_control(pcells[@], , rghostl, rghost2, ...
spmd_control(pcells[1], rghostl, , rghost3, ...
spmd_control(pcells[2], rghost2, , rghost3, ...
spmd_control(pcells[3], rghost3, rghostl, rghost2, ...
end

N o N

owned ghost neighbors cells to
cells cells copy changes to

should see one instance of the same region
=» simultaneous coherence!

December 7, 2015 http://legion.stanford.edu b
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@ Control tasks should copy changes from their owned cells to
ghost regions

task spmd control(rcells : region(...), rghost : region(...),
rneighborl : region(...), rneighbor2 : region(...),
e)

where reads exclusive(cells), reads simultaneous(rghost)
reads writes simultaneous(rneighborl, rneighbor2)

end

December 7, 2015 19
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MiniAero in Legion’s SPMD Style
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@ Control tasks should copy changes from their owned cells to
ghost regions

rghost
rneighboril rneighbor2

simultaneous(rghost)
simultaneous(rneighborl, rneighbor2)

tell runtime to map these regions simultaneously

December 7, 2015 20
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Pushing Updates to Ghost Regions

@ Tasks and copies must be synchronized to avoid races

task spmd control(...) where ...
do

compute_limiter(rcells, rghost, rfaces)
(rcells, rneighborl) -- data race!

end

>

compute_limiter app thread

runtime thread

node 0

ghost 1 \ rneighborl (= ghost 2) still being used =» data race! region insta;ces

region instances

|(-

ghost 2
AEREXAREREXEA’

compute_limiter app thread

node 1
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Phase Barriers for Synchronization
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@ Legion provides phase barriers, a light-weight mechanism to
synchronize between operations

@ Phase barriers are not a global barrier, unlike MPI barriers

@ Each barrier can make progress at a different rate

node 0 TO

7/ 10

>
app thread
pp >

. phase 3 phase barrier between T0 and T1

1 >

e\ 77 cop thecd
app thread

node 2 PP >

node 3

phase barrier between T2 and T3

>
app thread
pp >

—_— await
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Synchronizing Tasks and Copies

@ Each control task is responsible for synchronizing its subtasks

task spmd control(...) where ...
do

compute_limiter(rcells, rghost, rfaces) arrives(pb_g free)
copy(rcells, rneighborl) awaits(pb_nl_free)

end

>
await rneighborl (= ghost 2) becoming free app thread

/

runtime thread

i

region instances

node 0

BMAEAXAERXEEEXXXEXN’

compute_limiter arrive on the barrier to trigger the copy app thread}

node 1
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Synchronizing Tasks and Copies

@ Each control task is responsible for synchronizing its subtasks

task spmd control(...) where ...
do

compute limiter(rcells, rghost, rfaces) arrives(pb g free)
copy(rcells, rneighborl) awaits(pb_nl_free) arrives(pb_nl_ready)
compute_ face flux(rcells, rghost, rfaces) awaits(pb_g ready)

end

>
S app thread
Q
8 arrive to trigger the task runtime thread
C

\ when rneighborl is ready

ghost 1 region insta;ces

ghost 2 ghost 2 region instances

; v ¥y v vV bbb
compute_limiter /// compute_face_flux app thread 5

node 1

*.i

await ghost 2 becoming ready

24
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Relaxing Simultaneous Constraints

5 SANVIDIA

@ Simultaneous coherence enforces that all tasks use the same
region instance
@ Acquire and release operations relax that constraint

@ Useful when the task needs to copy the instance somewhere else
(e.g. GPU framebuffer memory)

app thread on CPU

l\*//// T app thread on GPU

\ runtime thread
region instances on
system memory

\\\ region instances on
once ghost 1 is acquired, framebuffer >

runtime can make copies

acquire

node 0
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Programming Experience

@ Started with the initial C++ port
@ Regent support for SPMD-style programs wasn’t ready yet
@ First correct version in 2 weeks
@ A few more weeks to optimize and tune
@ Would have been quicker with Regent

@ Legion Spy was helpful in tracking down synchronization bugs
@ Currently, this is the price of managing tasks manually

@ Event graphs show which tasks are depending on which phases of
barriers

@ Physical dependence analysis shows some missing dependencies if
tasks are synchronized incorrectly
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Preliminary Performance Study
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@ Weak scaling experiments
@ 256K cells per node
@ Certainty Cluster

@ Two target versions
@ Initial version without SPMD
@ Manually SPMD-ified version (one control task per processor)

27
December 7, 2015 http://legion.stanford.edu



- Los Alamos

NATIONAL LABORATORY

Weak Scaling Graph
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@ SPMD version scales much better than the original

400
O Legion C++
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dropped
3« by 30%
g 1.
3
dropped g
by 97% -4
H
g
o
£ 100
N ____N

Number of nodes

December 7, 2015 http://legion.stanford.edu

28



N
> IEAIamos

NATIONAL LABORATORY

EST.1943
<2 NVIDIA
\ e
. - ®

Measuring Runtime Overhead

@ Commenting out task bodies
@ Runtime still issues all tasks with necessary copies
@ SPMD-style version has stable overhead (0.6s — 0.8s per timestep)

100
O Legion C++
Legion C++ SPMD

10

Average time per timestep (s)

1 2 4 8 16 32

Number of nodes
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Plans

@ SPMD-ification in Regent
@ Will be faster due to better leaf tasks in Regent
@ Manual SPMD-ification support is now available
@ Automatic SPMD-ification will become available soon

@ Comparing between various SPMD configurations

@ We can have M control tasks each of which manages N processors

@ More control tasks better amortizes analysis cost but has more
overhead due to partitioning

@ Fewer control tasks can reduce communication overhead but be less
adaptable to load imbalance

@ We'll explore with Regent’s automatic SPMD-ification

30
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Concluding Remarks
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@ Legion’s SPMD-style is a practical way to achieve high
scalability
@ MiniAero shows steady weak-scaling performance up to 32 nodes

@ SPMD style is not too difficult

@ Requires only the control task to be rewritten

@ Does require explicit programmer-managed synchronization
between control tasks

@ SPMD-style programming will become easier
@ Cleaner syntax for in Regent
@ Planned automatic SPMD transformation in the Regent compiler
@ Planned automatic SPMD optimization in the Legion runtime

December 7, 2015 http://legion.stanford.edu ¥



