
Michael Bauer, 03/22/17

Legion: C++ API Update

2

Overview

- Brief C++ Interface Overview

- Legion STL

- New Mapper Interface

- Static Dependences

- Dependent Partitioning

- Dynamic Control Replication

Introduction and New Features

3

Legion C++ API

Why have a C++ API?

- Runtime embedded in an existing (not research) language

- Provide bindings for other languages: C, Lua, Python (coming soon)

- More direct control over what the runtime does

Caveat: C++ here is C++98

Is this still necessary or does everyone have access to C++11/14 compilers?

Design goals

4

Legion/Regent Relationship
A simple analogy

Regent Language C Language

Legion Runtime Assembly Code

High-Level

Low-Level

Implicit mapping of
variables to resources

Explicit mapping of
variables to resources

Implicit calling convention
for tasks/functions

Explicit calling convention
for tasks/functions

More productive

More expressive

5

Logical and Physical Regions

In Regent there are just ‘regions’

Legion API distinguishes between ‘logical’
and ‘physical’ regions

Logical regions name collections of data

Physical regions represent a
materialization of that data in a memory

Regent manages this relationship for you

In the C++ API it’s your responsibility

Names and Resources

6

Legion Tasks

All Legion tasks have the same type

User responsible for packing/unpacking
arguments into this format

Regent compiler packs and unpacks all
arguments for you

A generic interface for all computations

Data structure
that contains

task meta-data

Mapped physical regions
requested for the

execution of this task
(order is user defined)

Opaque handle
used for launching

sub-tasks
Pointer to the
Legion runtime

7

Launching Tasks

All operations created with
launcher structures

Launchers and Region Requirements

Region requirements specify logical
regions and privileges requested

8

Accessors and Raw Pointers

Two ways to get access to data in
physical regions

- Accessors

- Raw pointers

Can be verbose

Accessors have some overhead but
provide safety checks

Raw pointers are fast but unsafe

Getting access to data in physical regions

9

Legion STL

Started a collection of common template
patterns that Legion users employ

Task wrappers for unpacking raw pointers
for each field of a physical region

(Up to 16 regions)

Open to suggestions

C++11/14 supported

Library of common Legion template patterns

Vector of pointers
for each region

requirement with
1 entry per field

Byte offsets
for each

physical region

10

New Mapping Interface

New mapping interface is now live

Mapper calls all have the same format

Easier to tell inputs and outputs

Explicit management of physical instances

Set constraints for describing layouts

As promised at last year’s bootcamp

Context for
runtime calls

Task
Meta-data

Input
Struct

Output
Struct

11

New Default Mapper Implementation

New default mapper implementation for
new mapper interface

Some better heuristics and policies

Mapper is more complex so look for
‘default_policy_’ methods to overload

Easy to create custom mappers while
using default machinery

Making it easier to influence policy

12

Static Dependences

Provide interface to communicate statically
known dependence information

Reduce runtime overhead

Wrap code blocks in begin/end_static_trace

Describe static operations for each task

Pass pointer to dependences on launchers

Communicating static information

13

Dependent Partitioning API

Development branch ‘deppart’

Will merge to master in 3-4 weeks

Almost fully backwards compatible

Partitions no longer computed
with colorings

Create partitions from field data…

… or based on other partitions

Deferred computations just like all
other Legion operations

Better ways to compute partitions

14

Dependent Partitioning (Part 2)

New support for templated index spaces,
partitions, and logical regions

- Integer dimension

- Coordinate type

Inherit from non-templated base type

Templated versions of runtime calls

Templated Index Spaces and Logical Regions

15

A Revisionist History of Legion S3D
The two versions

Task

Task Task

Task

Task

Task Task Task

Task

Must Epoch
Launch

Task TaskTask Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Pure Legion
- Good programmability
- Didn’t have experience
necessary to build it and
make it scale

Extended Legion
- Good performance
- Explicit parallelism
destroys ability to create
good abstractions (see MPI)

16

The Problem
How do we make this scale?

This task can only run on one node

What if it has to launch many
subtasks per iteration?

Fact: no matter how efficient the
program analysis is, at some
granularity of task and number of
nodes it will become a sequential
bottleneck

True for “all” interesting Legion
applications at “scale”

Task

Task Task

Task

Task

Task Task Task

17

“Short Term” Hack
Must Epoch Launchers and Phase Barriers

Temporary solution: must epoch
task launch

Long running tasks communicate
through shard regions

Synchronize with phase barriers

Problem 1: fixed communication
patterns only

Problem 2: must epoch still has
sequential launch overhead

Not very Legion-like L

Task

Must Epoch
Launch

Task TaskTask Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

18

Why is this a hack?
Software Composability

Today: MPI / Must-Epoch Style

mpirun / must epoch {
task {

while (true) {
for (all whatever)

compute phase1
explicit communication/sync
for (all whatever)

compute phase 2
explicit communication/sync
…

}
}

}

Ideal Sequential Code

while (true) {
for (all whatever)

compute phase 1
for (all whatever)

compute phase 2
…

}

Legion (w/ Control Replication)

task {
while (true) {

Index task launch phase 1
Index task launch phase 2
…

}
}

Nasty explicit
communication

and synchronization

No explicit
communication or
synchronization

Can we make
this scale?

19

Control Replication
Scalable Implicit Parallelism

Two variations on this:

Static Control Replication (Regent)

Dynamic Control Replication (Legion)

Program with
sequential semantics

Stmt
Stmt
Stmt
Stmt

Stmt
Stmt
Stmt
Stmt

Stmt
Stmt
Stmt
Stmt

Shard for green
processor

Shard for red
processor

Programming System
(compiler/runtime)

Implicit communication
and synchronization

20

Static Control Replication
Implementation in Regent

Task

Task Task

Task

Task

Task Task Task

Task

Must Epoch
Launch

Task TaskTask Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Regent
Compiler

Static Analysis
Pro: zero overhead, good performance

Con: can only handle “partially”
static communication

Insufficient for things like AMR and AMG

21

Dynamic Control Replication
Handling dynamic program behavior

Task p

Task c0 Task c1

Logical Program Physical Execution

Task p
Shard 0

Task c0 Task c1

Task p
Shard 1

Task c0 Task c1

Replicate task ‘p’
into N “shards”

Replication is transparent
no change to ‘p’

Task p

Index
Task c0

0:63

Index
Task c1

0:63

Task p

Index
Task c0

0:31

Index
Task c1

0:31

Task p

Index
Task c0
32:63

Index
Task c1
32:63

22

Replicable Task Variants
Task Variant Requirements

Legion task variants have properties
(e.g. leaf, inner, idempotent)

We will add a ‘replicable’ property

No side effects (e.g. call random number
generator, maybe no printf statements)

All operations must be annotated with two
fields to map to shards:

- Point (single ops) or Domain (index ops)

- Slicing functor (more on next slide)

struct TaskLauncher {
…
DomainPoint index_point;
ShearingID shearing_functor;
…

};

struct IndexLauncher {
…
Domain index_domain;
ShearingID shearing_functor;
…

};

23

Slicing Functors
Determining which shards own which operations

Create slicing functors just like current
projection functors

Runtime will invoke functor on each
operation launched in replicated task

Can define arbitrary cleaving functions

Must be “functional”

Design questions: what kinds of methods
must a slicing functor support?

class SlicingFunctor {

// We definitely want this one
virtual ShardID slice(Point p) = 0;

// Can we do the inverse too?
virtual void inverse_slice(ShardID id,

Domain d, set<Point> &points) = 0;

virtual bool is_exclusive(void) const = 0;
};

Reminder: slicing functions just
say which shard owns an operation,

not where it maps

24

New Operation Kinds
Index Launches for Everything

Single Operation Kinds:

Task

Fill

(Dependent) Partition

Region-to-Region Copy

Acquire/Release

Attach/Detach

Inline Mapping

Index Space Operation Kinds:

Index Task

Index Fill

(More on partitioning soon)

Index Region-to-Region Copy

Index Acquire/Release

Index Attach/Detach

Nope! (why not?)

Use normal
projection functions

Will do these
operations on

demand

25

“Collectives”
Existing Legion features provide collective-like behavior

Logical Program Physical Execution

FutureMap fm = index_space_launch(…);

// Launch sub operations dependent on futures

Shard A Shard B

t0 t1 t2 t3

fm fm

All-to-all functionality

… only better because we can do it lazily

Future f = index_space_launch(…, reduction:+); Shard A Shard B

t0 t1 t2 t3

f f

+

All-reduce functionality

… can be lazy here too

26

Creating Regions and Partitions
Making sure things are symmetric

Other runtime operations must be
implemented as “collectives”

Each shard must get the same name

What about (dependent) partitioning?

Must also be internal “collective”

Still debating the best way to implement
this between Legion and Realm

- Alternative 1: partial partitioning

- Alternative 2: reduce to one shard

IndexSpace is = create_index_space(…)

FieldSpace fs = create_field_space(…)

LogicalRegion lr = create_logical_region(..)

IndexPartition ip = create_equal_partition(…)

IndexPartition ip = create_weighted_partition(…)

IndexPartition ip = create_partition_by_field(..)

IndexPartition ip = create_partition_by_image()

IndexPartition ip = create_partition_by_preimage()

27

Mapper Extensions
Only one mapper call to change

Modify map_task mapper call output

Chosen variant can be replicable

Will ignore ‘num_shards’ if not replicable

Shards assigned to processors in vector

Initially will only support control
replication for top-level task

struct MapTaskOutput {
vector<vector<PhysicalInstance>> instances;
vector<Processor> processors;
VariantID variant;
ProfilingRequestSet requests;
TaskPriority priority;
bool postmap;
unsigned num_shards;

};

28

Implementation Details
Planned Phases

Step 1: Refactor close operations to make them efficient (done!)

Step 2: Make ‘control_replication’ branch (done!)

Step 3: Update interface for development (done!)

Step 4: Data-parallel-only control replication (in progress)

- Replicate tasks, index launches, replication functions, no communication

Step 5: Introduce communication (in progress)

- Make close operations work

Step 6: Add support for additional index launch operations as needed

29

The Vision
Scalable and Composable Software with Sequential Semantics

task top_level {

call into legion_metis

for (however long) {

call into legion_boxlib

call into legion_hyper

call into legion_...

}
}

IS task launch
dependent partition

…

IS task launch
IS task launch

…
IS task launch
IS task launch

…
IS task launch
IS task launch

…
No explicit communication

No explicit synchronization
Scale to 10K+ nodes

