Coherence

Legion Bootcamp 2017

Coherence Modes

Exclusive
Atomic
Simultaneous
---Relaxed-

Legion Bootcamp 2017

About Simultaneous Coherence

If tasks 11 and 12 access r with simultaneous
coherence, they are guaranteed to be using
the same physical instance of r

Implies they cannot make a copy of r

Legion Bootcamp 2017 3

New Operations

+ A task t with simultaneous coherence on r can
- Acquire r
- Remove the copy restriction on r

* Release r
- Restore copy restrictiononr
- Invalidates any copies made by t
- Flushes any updates to the "master” copy

Legion Bootcamp 2017 4

Phase Barrier

* A phase barrier has a number of arrivers and
a number of waiters

* Arriving at a barrier increases the arrival
count but does not block the arriving task

» Waiters proceed past the barrier once the

expected number of arrivers have passed the
barrier

Legion Bootcamp 2017 5

Use Case

Long running producer/consumer pattern

Task 1 produces data that task 2 consumes
- Share an instance with simultaneous coherence

Task 1 arrives to indicate it has produced data
- Task 2 then proceeds to read the data

Task 2 arrives at a different barrier to indicate it has
consumed the data
- Task 1 then proceeds to produce more data

Legion Bootcamp 2017 6

Upside/Downside

» Used in a task-based SPMD-style of
programming
- Still using tasks and regions, but long-running tasks

can communicate with each other using explicit
copies of regions

+ Exposed to the pitfalls of concurrent

programming
- And in a more asynchronous model

Legion Bootcamp 2017 7

Metaprogramming

Legion Bootcamp 2017

What is Metaprogramming?

* Programs that generate programs
+ Example: C++ template metaprogramming

* But a very old idea
- Lisp in the 1950's
- Explored extensively since the 1980's

Prof. Aiken CS 315B Lecture 7

Why Metaprogramming?

- Reason #1: Performance

» Consider a function F(X,Y)

- X changes with every call
- Y is one of a small set of possible values
- Or fixed for long periods of time

* Generate versions F,(X) for each value of Y
- And optimize each Fy(.) separately

Prof. Aiken CS 315B Lecture 7 10

Why Metaprogramming?

- Reason #2: Software maintenance

* Maintaining versions F,(X) for each value of Y
by hand is painful

* Much easier to maintain a program that auto-
generates the needed versions

Prof. Aiken CS 315B Lecture 7 11

Why Metaprogramming?

* Reason #3: Autotuning

- Based on performance measurements, generate a
new version of F(X)

- Here, machine characteristics are a “hidden”,
constant parameter

* May need to generate many versions F(X)

- Which versions and how many are data dependent

- The space of possible versions could be very large
or even infinite

Prof. Aiken CS 315B Lecture 7 12

Templates using Metaprogramming

+ Templates are an instance of
metaprogramming

+ Each template argument produces a distinct
set of methods, customized to a particular

Type

* But templates are a crippled programming
environment

Prof. Aiken CS 315B Lecture 7 13

How Does this Work?

* Lua and Terra (and Regent) share a lexical
environment

- Lua variables can be referred to in Terra & Regent

+ Terra types are Lua values
- E.g., Array(float)

Prof. Aiken CS 315B Lecture 7 14

Escape

* Lua can also be used to compute Terra code
- Expressions or statements

+ The escape operator [e] inserts the value of
the Lua expression e into a Terra context
- e is Lua code
- That evaluates to a Terra expression

Prof. Aiken CS 315B Lecture 7 15

Example

function create_expr(num, v)
local value
for i = 1,num do
if value then
value = "value + v
else
value = " v
end
end
return value
end
terra scale(a: float): float
return [create_expr(ITERATE,a)]

end
Legion Bootcamp 2017

16

Circuit

Legion Bootcamp 2017

17

Circuit

- Electrical simulation

* A graph
- Wires are edges
- Nodes are places where wires meet

Legion Bootcamp 2017

18

Circuit

* Iterative simulation with three phases:
- calculate_new_currents
- distribute_charge
- update_voltages

Legion Bootcamp 2017

19

Look At

» Partitioning

+ Tasks

* Mapping

- Optimizations
* Performance
* Legion version

Legion Bootcamp 2017

20

Partitioning

Legion Bootcamp 2017

21

Partitioning Outline

* Partition the graph into pieces

» Each piece consists of
- Private nodes
* Nodes with no edges cross into other pieces

- Shared nodes
* Nodes with at least one edge crossing to another piece

- Ghost nodes

* The neighbors of the shared nodes that are in other
pieces

Legion Bootcamp 2017 22

Circuit Dependent Partitioning

var ph_equal = partition(equal, rn, colors)

var pw_outgoing = preimage(rw, pn_equal, rw.in_ptr)

var pw_incoming = preimage(rw, pn_equal, rw.out_ptr)

var pw_crossing_out = pw_outgoing - pw_incoming

var pw_crossing_in = pw_incoming - pw_outgoing

var pn_shared_in = image(rn, pw_crossing_in, rw.out_ptr)
var pn_shared_out = image(rn, pw_crossing_out, rw.in_ptr)
var pn_private = (pn_equal - pn_shared_in) - pn_shared_out
var pn_shared = pn_equal - pn_private

var pn_ghost = image(rn, pw_crossing_out, rw.out_ptr)

Legion Bootcamp 2017 23

Tasks

Legion Bootcamp 2017

24

Mapping

Legion Bootcamp 2017

25

Mapping

* Mapping is the process of assigning resources
to Regent/Legion programs

» Conceptually

- Assigh a processor to each task
+ The task will execute in its entirety on that processor

- Assigh a memory to each region argument

* And many other things!

Legion Bootcamp 2017 26

Understanding Mappers

* Mapping is an APT
- A set of callbacks

* Each is called at a particular point in a task’ s
lifetime

- To write mappers, need to know this sequence of
stages

Legion Bootcamp 2017 27

The Legion Mapping API

* Mapping is currently done at the Legion level
- C++

* A mapper implements the mapping APT
- A set of callbacks

Legion Bootcamp 2017 28

High-Level Overview

* An instance of the Legion runtime runs on
every node

* When a task is launched the local runtime
- Makes mapper calls to pick a processor for the task

- Makes mapper calls to pick memories for the region
arguments

- ... and other mapper calls as well ...

Legion Bootcamp 2017 29

New Concepts

* There are a number of concepts at the
mapping level that don't exist in Regent

- Machine models
- Variants

* Physical Instances

- More on this later ---

Legion Bootcamp 2017

30

Machine Model

+ To pick concrete processors & memories, the
runtime must know:

* How many processors/memories there are
- And of what kinds

» And where the processors/memories are
- At least relative to each other

Legion Bootcamp 2017 31

Machine Model

Processors

LOC

TOC
PROC_SET
UTILITY
N0,

Memories

Legion Bootcamp 2017

GLOBAL
SYSTEM

RDMA
FRAME_BUFFER
ZERO_COPY
DISK

HDF5

32

Affinities

* Processor -> Memory
- Which memories are attached to a processor

Memory -> Memory
- Which memories have channels between them

- Memory -> Processor
- All processors attached to a memory

Affinities are provided as a list of (proc,mem)and (mem,mem)
pairs

Legion Bootcamp 2017 33

Task Variants

* A task can have multiple variants
- Different implementations of the same task

- Multiple variants can be registered with the
runtime

- Variants can have associated constraints

+ Examples
- A variant for LOC
- Another variant for TOC
- Variants for different data layouts

Legion Bootcamp 2017 34

Physical Instances

* A regionis a logical name for data

* A physical instance is a copy of that data
- For some set of fields

* There can be 0, 1 or many physical instances of a
specific field of a region at any time

Legion Bootcamp 2017

35

Physical Instances

Can be valid or invalid
- Is the data current or not?

Live in a specific memory

Have a specific layout

- Column major, row major, blocked, struct-of-arrays, array-of-
structs, ..

Are allocated explicitly by the mapper
Are deallocated by the runtime

- Garbage collected

Legion Bootcamp 2017

36

A Word About Physical Instances

Many physical instances of a region can exist simultaneously
- Including different versions of the same data

A task writing version O to disk
A task reading version 5

A task writing version 6
- The current version!

A task scheduled to read version 6
A task scheduled to write version 7
A (meta)task scheduled to deallocate version 6

Legion Bootcamp 2017 37

A Mapper

* The circuit custom mapper, circuit.cc

Legion Bootcamp 2017

38

Create Mappers

» Called once on start-up
- On each node

Legion Bootcamp 2017

39

Mapper Calls: Picking a Processor

There are three stages, in order:

Select task options
- Like it says, choose among some options

Slice task

- Break up index launches into chunks and distribute
- Fixes the node of the task

Map task

- Bind the task to a processor

Legion Bootcamp 2017

40

Controlling Processor Choice in Regent

* Place immediately before a task declaration
- __demand(__cuda)

- Causes both CPU and GPU task variants to be
produced

* And the default mapper always prefers to pick
a GPU variant if possible

Legion Bootcamp 2017 41

Layout Constraints

» Tasks can have layout constraints on physical
Instances

- "This task requires data in row major order”

+ Constraints are just that
- Don't specify an exact layout
- Multiple instances may satisfy the constraints

Legion Bootcamp 2017 42

Selecting Physical Instances

+ The default mapper first checks if there is an
existing valid instance for a region
requirement
- That satisfies the layout constraints
- And has affinity to the processor

- If so, return it

- If not, create a new instance

- In system memory (for a CPU mapped task)
- In frame buffer memory (for a GPU mapped task)

Legion Bootcamp 2017 43

An Exception

* Reduction instances are always created new
- Never reused

* Note

- The framebuffer is not the best place for a
reduction instance on the GPU

- If you map tasks with reduction privileges to the
GPU, you may need some custom mapper code.

Legion Bootcamp 2017 44

Reduction Instances

* A reduction instanceis fj||(R’, 0)
a special instance used

) for i in R.indices do
for reductions

R'[i]+= vall
R'Ti] += val?2
+ Pattern 1]
foriinR do
i.field += vall - later ...
I.field += val2

R+=R

Legion Bootcamp 2017 45

Virtual Mappings

» It is also possible for a mapper to map a
region to no instance

- If the task does not use the region itself
- E.g., only passes it to subtasks

» This is a virtual mapping

Legion Bootcamp 2017

46

Summary

* Mapping
- Selects processors for tasks

- Selects memories for physical instances
+ Satisfying region requirements of tasks

* Many options
- Default mapper does reasonable things

- But any sufficiently complex program will need
some customization

Legion Bootcamp 2017

47

Regent Optimizations

Legion Bootcamp 2017

48

Index Launches

* A normal task call launches a single task

* An index task call launches a set of tasks
- One for each point in a supplied index space

- Index launches are more efficient than
launching many tasks individually

- Regent automatically transforms loops of single
task launches into index task launches

Legion Bootcamp 2017 49

Example

for x in prt.colors do
task(prt[x])

becomes
index_launch(task,prt,prt.colors)

(if there are no dependencies)

Legion Bootcamp 2017

50

Control Replication

repeat
for rin part do
A(r)
end
for rin part
B(r)
end
end

for rin part do
repeat
A(r)
B(r)
end
end

Legion Bootcamp 2017

51

Control Replication

repeat for rin part do
for rin part do repeat
A(r) A(r)
end -+ data movement
for rin part
B(r) B(r)
end end

end end

Legion Bootcamp 2017 52

Control Replication

» Control replication is crucial to scalability
- At least, if one wants to write natural code

- Without it

- Width of index task launches increases with
machine size

- Depth is small: a single task

+ With it depth can increase to the running time
of the program

Legion Bootcamp 2017 53

Performance

Legion Bootcamp 2017

54

Regent Circuit Implementation

* Look at three mappings

tasks on CPUs, regions in system memory
tasks on GPUs, regions in frame buffer

tasks on GPUs

- Shared and ghost regions in zero copy memory
- Private regions in frame buffer memory

> > >

Legion Bootcamp 2017 55

Circuit in Legion

Legion Bootcamp 2017

56

More on Differences Legion vs. Regent

* Runtime object
- Task registration

* Mappers

- Mapper creation/registration
- Task context
* Region requirements

* Physical Instances
- Inline mappings, unmap calls
- Layout constraints

* Futures
- Accessors

Legion Bootcamp 2017

57

Default Mapper

Legion Bootcamp 2017

58

