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Coherence Modes

Exclusive
Atomic
Simultaneous
---Relaxed-
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About Simultaneous Coherence

If tasks 11 and 12 access r with simultaneous
coherence, they are guaranteed to be using
the same physical instance of r

Implies they cannot make a copy of r
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New Operations

+ A task t with simultaneous coherence on r can
- Acquire r
- Remove the copy restriction on r

* Release r
- Restore copy restrictiononr
- Invalidates any copies made by t
- Flushes any updates to the "master” copy
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Phase Barrier

* A phase barrier has a number of arrivers and
a number of waiters

* Arriving at a barrier increases the arrival
count but does not block the arriving task

» Waiters proceed past the barrier once the

expected number of arrivers have passed the
barrier
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Use Case

Long running producer/consumer pattern

Task 1 produces data that task 2 consumes
- Share an instance with simultaneous coherence

Task 1 arrives to indicate it has produced data
- Task 2 then proceeds to read the data

Task 2 arrives at a different barrier to indicate it has
consumed the data
- Task 1 then proceeds to produce more data
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Upside/Downside

» Used in a task-based SPMD-style of
programming
- Still using tasks and regions, but long-running tasks

can communicate with each other using explicit
copies of regions

+ Exposed to the pitfalls of concurrent

programming
- And in a more asynchronous model
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Metaprogramming
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What is Metaprogramming?

* Programs that generate programs
+ Example: C++ template metaprogramming

* But a very old idea
- Lisp in the 1950's
- Explored extensively since the 1980's
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Why Metaprogramming?

- Reason #1: Performance

» Consider a function F(X,Y)

- X changes with every call
- Y is one of a small set of possible values
- Or fixed for long periods of time

* Generate versions F,(X) for each value of Y
- And optimize each Fy(.) separately
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Why Metaprogramming?

- Reason #2: Software maintenance

* Maintaining versions F,(X) for each value of Y
by hand is painful

* Much easier to maintain a program that auto-
generates the needed versions
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Why Metaprogramming?

* Reason #3: Autotuning

- Based on performance measurements, generate a
new version of F(X)

- Here, machine characteristics are a “hidden”,
constant parameter

* May need to generate many versions F(X)

- Which versions and how many are data dependent

- The space of possible versions could be very large
or even infinite
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Templates using Metaprogramming

+ Templates are an instance of
metaprogramming

+ Each template argument produces a distinct
set of methods, customized to a particular

Type

* But templates are a crippled programming
environment
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How Does this Work?

* Lua and Terra (and Regent) share a lexical
environment

- Lua variables can be referred to in Terra & Regent

+ Terra types are Lua values
- E.g., Array(float)
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Escape

* Lua can also be used to compute Terra code
- Expressions or statements

+ The escape operator [ e ] inserts the value of
the Lua expression e into a Terra context
- e is Lua code
- That evaluates to a Terra expression
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Example

function create_expr(num, v)
local value
for i = 1,num do
if value then
value = "value + v
else
value = " v
end
end
return value
end
terra scale(a: float): float
return [create_expr(ITERATE,a)]

end
Legion Bootcamp 2017
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Circuit
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Circuit

- Electrical simulation

* A graph
- Wires are edges
- Nodes are places where wires meet

Legion Bootcamp 2017
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Circuit

* Iterative simulation with three phases:
- calculate_new_currents
- distribute_charge
- update_voltages

Legion Bootcamp 2017
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Look At

» Partitioning

+ Tasks

* Mapping

- Optimizations
* Performance
* Legion version

Legion Bootcamp 2017
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Partitioning
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Partitioning Outline

* Partition the graph into pieces

» Each piece consists of
- Private nodes
* Nodes with no edges cross into other pieces

- Shared nodes
* Nodes with at least one edge crossing to another piece

- Ghost nodes

* The neighbors of the shared nodes that are in other
pieces
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Circuit Dependent Partitioning

var ph_equal = partition(equal, rn, colors)

var pw_outgoing = preimage(rw, pn_equal, rw.in_ptr)

var pw_incoming = preimage(rw, pn_equal, rw.out_ptr)

var pw_crossing_out = pw_outgoing - pw_incoming

var pw_crossing_in = pw_incoming - pw_outgoing

var pn_shared_in = image(rn, pw_crossing_in, rw.out_ptr)
var pn_shared_out = image(rn, pw_crossing_out, rw.in_ptr)
var pn_private = (pn_equal - pn_shared_in) - pn_shared_out
var pn_shared = pn_equal - pn_private

var pn_ghost = image(rn, pw_crossing_out, rw.out_ptr)
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Tasks
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Mapping
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Mapping

* Mapping is the process of assigning resources
to Regent/Legion programs

» Conceptually

- Assigh a processor to each task
+ The task will execute in its entirety on that processor

- Assigh a memory to each region argument

* And many other things!
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Understanding Mappers

* Mapping is an APT
- A set of callbacks

* Each is called at a particular point in a task’ s
lifetime

- To write mappers, need to know this sequence of
stages
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The Legion Mapping API

* Mapping is currently done at the Legion level
- C++

* A mapper implements the mapping APT
- A set of callbacks
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High-Level Overview

* An instance of the Legion runtime runs on
every node

* When a task is launched the local runtime
- Makes mapper calls to pick a processor for the task

- Makes mapper calls to pick memories for the region
arguments

- ... and other mapper calls as well ...
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New Concepts

* There are a number of concepts at the
mapping level that don't exist in Regent

- Machine models
- Variants

* Physical Instances

- More on this later ---

Legion Bootcamp 2017
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Machine Model

+ To pick concrete processors & memories, the
runtime must know:

* How many processors/memories there are
- And of what kinds

» And where the processors/memories are
- At least relative to each other
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Machine Model

Processors

LOC

TOC
PROC_SET
UTILITY
N0,

Memories

Legion Bootcamp 2017

GLOBAL
SYSTEM

RDMA
FRAME_BUFFER
ZERO_COPY
DISK

HDF5
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Affinities

* Processor -> Memory
- Which memories are attached to a processor

Memory -> Memory
- Which memories have channels between them

- Memory -> Processor
- All processors attached to a memory

Affinities are provided as a list of (proc,mem)and (mem,mem)
pairs
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Task Variants

* A task can have multiple variants
- Different implementations of the same task

- Multiple variants can be registered with the
runtime

- Variants can have associated constraints

+ Examples
- A variant for LOC
- Another variant for TOC
- Variants for different data layouts
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Physical Instances

* A regionis a logical name for data

* A physical instance is a copy of that data
- For some set of fields

* There can be 0, 1 or many physical instances of a
specific field of a region at any time

Legion Bootcamp 2017
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Physical Instances

Can be valid or invalid
- Is the data current or not?

Live in a specific memory

Have a specific layout

- Column major, row major, blocked, struct-of-arrays, array-of-
structs, ..

Are allocated explicitly by the mapper
Are deallocated by the runtime

- Garbage collected

Legion Bootcamp 2017
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A Word About Physical Instances

Many physical instances of a region can exist simultaneously
- Including different versions of the same data

A task writing version O to disk
A task reading version 5

A task writing version 6
- The current version!

A task scheduled to read version 6
A task scheduled to write version 7
A (meta)task scheduled to deallocate version 6
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A Mapper

* The circuit custom mapper, circuit.cc

Legion Bootcamp 2017
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Create Mappers

» Called once on start-up
- On each node

Legion Bootcamp 2017
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Mapper Calls: Picking a Processor

There are three stages, in order:

Select task options
- Like it says, choose among some options

Slice task

- Break up index launches into chunks and distribute
- Fixes the node of the task

Map task

- Bind the task to a processor

Legion Bootcamp 2017

40



Controlling Processor Choice in Regent

* Place immediately before a task declaration
- __demand(__cuda)

- Causes both CPU and GPU task variants to be
produced

* And the default mapper always prefers to pick
a GPU variant if possible
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Layout Constraints

» Tasks can have layout constraints on physical
Instances

- "This task requires data in row major order”

+ Constraints are just that
- Don't specify an exact layout
- Multiple instances may satisfy the constraints
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Selecting Physical Instances

+ The default mapper first checks if there is an
existing valid instance for a region
requirement
- That satisfies the layout constraints
- And has affinity to the processor

- If so, return it

- If not, create a new instance

- In system memory (for a CPU mapped task)
- In frame buffer memory (for a GPU mapped task)
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An Exception

* Reduction instances are always created new
- Never reused

* Note

- The framebuffer is not the best place for a
reduction instance on the GPU

- If you map tasks with reduction privileges to the
GPU, you may need some custom mapper code.
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Reduction Instances

* A reduction instanceis  fj||(R’, 0)
a special instance used

) for i in R.indices do
for reductions

R'[i]+= vall
R'Ti] += val?2
+ Pattern 1]
foriinR do
i.field += vall - later ...
I.field += val2

R+=R
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Virtual Mappings

» It is also possible for a mapper to map a
region to no instance

- If the task does not use the region itself
- E.g., only passes it to subtasks

» This is a virtual mapping

Legion Bootcamp 2017
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Summary

* Mapping
- Selects processors for tasks

- Selects memories for physical instances
+ Satisfying region requirements of tasks

* Many options
- Default mapper does reasonable things

- But any sufficiently complex program will need
some customization

Legion Bootcamp 2017
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Regent Optimizations
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Index Launches

* A normal task call launches a single task

* An index task call launches a set of tasks
- One for each point in a supplied index space

- Index launches are more efficient than
launching many tasks individually

- Regent automatically transforms loops of single
task launches into index task launches
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Example

for x in prt.colors do
task(prt[x])

becomes
index_launch(task,prt,prt.colors)

(if there are no dependencies)

Legion Bootcamp 2017
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Control Replication

repeat
for rin part do
A(r)
end
for rin part
B(r)
end
end

for rin part do
repeat
A(r)
B(r)
end
end

Legion Bootcamp 2017
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Control Replication

repeat for rin part do
for rin part do repeat
A(r) A(r)
end -+ data movement
for rin part
B(r) B(r)
end end

end end
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Control Replication

» Control replication is crucial to scalability
- At least, if one wants to write natural code

- Without it

- Width of index task launches increases with
machine size

- Depth is small: a single task

+ With it depth can increase to the running time
of the program
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Performance
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Regent Circuit Implementation

* Look at three mappings

tasks on CPUs, regions in system memory
tasks on GPUs, regions in frame buffer

tasks on GPUs

- Shared and ghost regions in zero copy memory
- Private regions in frame buffer memory

> > >
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Circuit in Legion
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More on Differences Legion vs. Regent

* Runtime object
- Task registration

* Mappers

- Mapper creation/registration
- Task context
* Region requirements

* Physical Instances
- Inline mappings, unmap calls
- Layout constraints

* Futures
- Accessors
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Default Mapper
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