
Coherence

Legion Bootcamp 2017 1

Coherence Modes

•  Exclusive
•  Atomic
•  Simultaneous
•  …Relaxed…

Legion Bootcamp 2017 2

About Simultaneous Coherence

If tasks t1 and t2 access r with simultaneous
coherence, they are guaranteed to be using

the same physical instance of r

Implies they cannot make a copy of r

Legion Bootcamp 2017 3

New Operations

•  A task t with simultaneous coherence on r can
•  Acquire r

–  Remove the copy restriction on r

•  Release r
–  Restore copy restriction on r
–  Invalidates any copies made by t
–  Flushes any updates to the ”master” copy

Legion Bootcamp 2017 4

Phase Barrier

•  A phase barrier has a number of arrivers and
a number of waiters

•  Arriving at a barrier increases the arrival
count but does not block the arriving task

•  Waiters proceed past the barrier once the
expected number of arrivers have passed the
barrier

Legion Bootcamp 2017 5

Use Case

•  Long running producer/consumer pattern

•  Task 1 produces data that task 2 consumes
–  Share an instance with simultaneous coherence

•  Task 1 arrives to indicate it has produced data
–  Task 2 then proceeds to read the data

•  Task 2 arrives at a different barrier to indicate it has
consumed the data
–  Task 1 then proceeds to produce more data

Legion Bootcamp 2017 6

Upside/Downside

•  Used in a task-based SPMD-style of
programming
–  Still using tasks and regions, but long-running tasks

can communicate with each other using explicit
copies of regions

•  Exposed to the pitfalls of concurrent
programming
–  And in a more asynchronous model

Legion Bootcamp 2017 7

Legion Bootcamp 2017 8

Metaprogramming

What is Metaprogramming?

•  Programs that generate programs

•  Example: C++ template metaprogramming

•  But a very old idea
–  Lisp in the 1950’s
–  Explored extensively since the 1980’s

Prof. Aiken CS 315B Lecture 7 9

Why Metaprogramming?

•  Reason #1: Performance

•  Consider a function F(X,Y)
–  X changes with every call
–  Y is one of a small set of possible values
–  Or fixed for long periods of time

•  Generate versions FY(X) for each value of Y
–  And optimize each FY(.) separately

Prof. Aiken CS 315B Lecture 7 10

Why Metaprogramming?

•  Reason #2: Software maintenance

•  Maintaining versions FY(X) for each value of Y
by hand is painful

•  Much easier to maintain a program that auto-
generates the needed versions

Prof. Aiken CS 315B Lecture 7 11

Why Metaprogramming?

•  Reason #3: Autotuning
–  Based on performance measurements, generate a

new version of F(X)
–  Here, machine characteristics are a “hidden”,

constant parameter

•  May need to generate many versions F(X)
–  Which versions and how many are data dependent
–  The space of possible versions could be very large

or even infinite

Prof. Aiken CS 315B Lecture 7 12

Templates using Metaprogramming

•  Templates are an instance of
metaprogramming

•  Each template argument produces a distinct
set of methods, customized to a particular
type

•  But templates are a crippled programming
environment

Prof. Aiken CS 315B Lecture 7 13

How Does this Work?

•  Lua and Terra (and Regent) share a lexical
environment
–  Lua variables can be referred to in Terra & Regent

•  Terra types are Lua values
–  E.g., Array(float)

Prof. Aiken CS 315B Lecture 7 14

Escape

•  Lua can also be used to compute Terra code
–  Expressions or statements

•  The escape operator [e] inserts the value of
the Lua expression e into a Terra context
–  e is Lua code
–  That evaluates to a Terra expression

Prof. Aiken CS 315B Lecture 7 15

Example

function create_expr(num, v)
 local value
 for i = 1,num do
 if value then
 value = `value + v
 else
 value = `v
 end
 end
 return value
end
terra scale(a: float): float
 return [create_expr(ITERATE,a)]
end

Legion Bootcamp 2017 16

Legion Bootcamp 2017 17

Circuit

Circuit

•  Electrical simulation

•  A graph
–  Wires are edges
–  Nodes are places where wires meet

Legion Bootcamp 2017 18

Circuit

•  Iterative simulation with three phases:
–  calculate_new_currents
–  distribute_charge
–  update_voltages

Legion Bootcamp 2017 19

Look At

•  Partitioning
•  Tasks
•  Mapping
•  Optimizations
•  Performance
•  Legion version

Legion Bootcamp 2017 20

Partitioning

Legion Bootcamp 2017 21

Partitioning Outline

•  Partition the graph into pieces

•  Each piece consists of
–  Private nodes

•  Nodes with no edges cross into other pieces
–  Shared nodes

•  Nodes with at least one edge crossing to another piece
–  Ghost nodes

•  The neighbors of the shared nodes that are in other
pieces

Legion Bootcamp 2017 22

Circuit Dependent Partitioning

 var pn_equal = partition(equal, rn, colors)
 var pw_outgoing = preimage(rw, pn_equal, rw.in_ptr)
 var pw_incoming = preimage(rw, pn_equal, rw.out_ptr)
 var pw_crossing_out = pw_outgoing - pw_incoming
 var pw_crossing_in = pw_incoming - pw_outgoing
 var pn_shared_in = image(rn, pw_crossing_in, rw.out_ptr)
 var pn_shared_out = image(rn, pw_crossing_out, rw.in_ptr)
 var pn_private = (pn_equal - pn_shared_in) - pn_shared_out
 var pn_shared = pn_equal - pn_private
 var pn_ghost = image(rn, pw_crossing_out, rw.out_ptr)

Legion Bootcamp 2017 23

Tasks

Legion Bootcamp 2017 24

Mapping

Legion Bootcamp 2017 25

Mapping

•  Mapping is the process of assigning resources
to Regent/Legion programs

•  Conceptually
–  Assign a processor to each task

•  The task will execute in its entirety on that processor

–  Assign a memory to each region argument

•  And many other things!
Legion Bootcamp 2017 26

Understanding Mappers

•  Mapping is an API
–  A set of callbacks

•  Each is called at a particular point in a task’s
lifetime
–  To write mappers, need to know this sequence of

stages

Legion Bootcamp 2017 27

The Legion Mapping API

•  Mapping is currently done at the Legion level
–  C++

•  A mapper implements the mapping API
–  A set of callbacks

Legion Bootcamp 2017 28

High-Level Overview

•  An instance of the Legion runtime runs on
every node

•  When a task is launched the local runtime
–  Makes mapper calls to pick a processor for the task
–  Makes mapper calls to pick memories for the region

arguments
–  … and other mapper calls as well …

Legion Bootcamp 2017 29

New Concepts

•  There are a number of concepts at the
mapping level that don’t exist in Regent

•  Machine models
•  Variants
•  Physical Instances

•  More on this later …

Legion Bootcamp 2017 30

Machine Model

•  To pick concrete processors & memories, the
runtime must know:

•  How many processors/memories there are
–  And of what kinds

•  And where the processors/memories are
–  At least relative to each other

Legion Bootcamp 2017 31

Machine Model

•  Processors
–  LOC
–  TOC
–  PROC_SET
–  UTILITY
–  IO

•  Memories
–  GLOBAL
–  SYSTEM
–  RDMA
–  FRAME_BUFFER
–  ZERO_COPY
–  DISK
–  HDF5

Legion Bootcamp 2017 32

Affinities

•  Processor -> Memory
–  Which memories are attached to a processor

•  Memory -> Memory
–  Which memories have channels between them

•  Memory -> Processor
–  All processors attached to a memory

•  Affinities are provided as a list of (proc,mem) and (mem,mem)
pairs

Legion Bootcamp 2017 33

Task Variants

•  A task can have multiple variants
–  Different implementations of the same task
–  Multiple variants can be registered with the

runtime
–  Variants can have associated constraints

•  Examples
–  A variant for LOC
–  Another variant for TOC
–  Variants for different data layouts

Legion Bootcamp 2017 34

Physical Instances

•  A region is a logical name for data

•  A physical instance is a copy of that data
–  For some set of fields

•  There can be 0, 1 or many physical instances of a
specific field of a region at any time

Legion Bootcamp 2017 35

Physical Instances

•  Can be valid or invalid
–  Is the data current or not?

•  Live in a specific memory

•  Have a specific layout
–  Column major, row major, blocked, struct-of-arrays, array-of-

structs, …

•  Are allocated explicitly by the mapper

•  Are deallocated by the runtime
–  Garbage collected

Legion Bootcamp 2017 36

A Word About Physical Instances

•  Many physical instances of a region can exist simultaneously
–  Including different versions of the same data

•  A task writing version 0 to disk
•  A task reading version 5
•  A task writing version 6

–  The current version!
•  A task scheduled to read version 6
•  A task scheduled to write version 7
•  A (meta)task scheduled to deallocate version 6
•  …

Legion Bootcamp 2017 37

A Mapper

•  The circuit custom mapper, circuit.cc

Legion Bootcamp 2017 38

Create Mappers

•  Called once on start-up
–  On each node

Legion Bootcamp 2017 39

Mapper Calls: Picking a Processor

•  There are three stages, in order:

•  Select task options
–  Like it says, choose among some options

•  Slice task
–  Break up index launches into chunks and distribute
–  Fixes the node of the task

•  Map task
–  Bind the task to a processor

Legion Bootcamp 2017 40

Controlling Processor Choice in Regent

•  Place immediately before a task declaration
–  __demand(__cuda)

•  Causes both CPU and GPU task variants to be
produced

•  And the default mapper always prefers to pick
a GPU variant if possible

Legion Bootcamp 2017 41

Layout Constraints

•  Tasks can have layout constraints on physical
instances
–  “This task requires data in row major order”

•  Constraints are just that
–  Don’t specify an exact layout
–  Multiple instances may satisfy the constraints

Legion Bootcamp 2017 42

Selecting Physical Instances

•  The default mapper first checks if there is an
existing valid instance for a region
requirement
–  That satisfies the layout constraints
–  And has affinity to the processor

•  If so, return it
•  If not, create a new instance

–  In system memory (for a CPU mapped task)
–  In frame buffer memory (for a GPU mapped task)

Legion Bootcamp 2017 43

An Exception

•  Reduction instances are always created new
–  Never reused

•  Note
–  The framebuffer is not the best place for a

reduction instance on the GPU
–  If you map tasks with reduction privileges to the

GPU, you may need some custom mapper code.

Legion Bootcamp 2017 44

Reduction Instances

•  A reduction instance is
a special instance used
for reductions

•  Pattern
for i in R do

 i.field += val1
 i.field += val2

fill(R’, 0)
for i in R.indices do
 R’[i] += val1
 R’[i] += val2

… later …

R += R’

Legion Bootcamp 2017 45

Virtual Mappings

•  It is also possible for a mapper to map a
region to no instance
–  If the task does not use the region itself
–  E.g., only passes it to subtasks

•  This is a virtual mapping

Legion Bootcamp 2017 46

Summary

•  Mapping
–  Selects processors for tasks
–  Selects memories for physical instances

•  Satisfying region requirements of tasks

•  Many options
–  Default mapper does reasonable things
–  But any sufficiently complex program will need

some customization

Legion Bootcamp 2017 47

Regent Optimizations

Legion Bootcamp 2017 48

Index Launches

•  A normal task call launches a single task

•  An index task call launches a set of tasks
–  One for each point in a supplied index space

•  Index launches are more efficient than
launching many tasks individually
–  Regent automatically transforms loops of single

task launches into index task launches

Legion Bootcamp 2017 49

Example

for x in prt.colors do
 task(prt[x])

becomes

index_launch(task,prt,prt.colors)

(if there are no dependencies)

Legion Bootcamp 2017 50

Control Replication

repeat
 for r in part do

 A(r)
 end
 for r in part
 B(r)
 end
end

for r in part do
 repeat
 A(r)
 B(r)
 end
end

Legion Bootcamp 2017 51

Control Replication

repeat
 for r in part do

 A(r)
 end
 for r in part
 B(r)
 end
end

for r in part do
 repeat
 A(r)
 … data movement
…
 B(r)
 end
end

Legion Bootcamp 2017 52

Control Replication

•  Control replication is crucial to scalability
–  At least, if one wants to write natural code

•  Without it
–  Width of index task launches increases with

machine size
–  Depth is small: a single task

•  With it depth can increase to the running time
of the program

Legion Bootcamp 2017 53

Performance

Legion Bootcamp 2017 54

Regent Circuit Implementation

•  Look at three mappings

•  All tasks on CPUs, regions in system memory
•  All tasks on GPUs, regions in frame buffer
•  All tasks on GPUs

–  Shared and ghost regions in zero copy memory
–  Private regions in frame buffer memory

Legion Bootcamp 2017 55

Circuit in Legion

Legion Bootcamp 2017 56

More on Differences Legion vs. Regent

•  Runtime object
–  Task registration

•  Mappers
–  Mapper creation/registration

•  Task context
•  Region requirements
•  Physical Instances

–  Inline mappings, unmap calls
–  Layout constraints

•  Futures
•  Accessors

Legion Bootcamp 2017 57

Default Mapper

Legion Bootcamp 2017 58

