
Correctness of Dynamic Dependence Analysis for
Implicitly Parallel Tasking Systems

Wonchan Lee
Stanford University

wonchan@cs.stanford.edu

George Stelle
Los Alamos National Laboratory

stelleg@lanl.gov

Patrick McCormick
Los Alamos National Laboratory

pat@lanl.gov

Alex Aiken
Stanford University

aiken@cs.stanford.edu

Abstract—In this paper, we rigorously verify the correctness of
dynamic dependence analysis, a key algorithm for parallelizing
programs in implicitly parallel tasking systems. A dynamic de-
pendence analysis of a program results in a task graph, a DAG of
tasks constraining the order of task execution. Because a program
is automatically parallelized based on its task graph, the analysis
algorithm must generate a graph with all the dependencies that
are necessary to preserve the program’s original semantics for
any non-deterministic parallel execution of tasks. However, this
correctness is not straightforward to verify as implicitly parallel
tasking systems often use an optimized dependence analysis
algorithm. To study the correctness of dynamic dependence
analysis in a realistic setting, we design a model algorithm that
captures the essence of realistic analysis algorithms. We prove
that this algorithm constructs task graphs that soundly and
completely express correct parallel executions of programs. We
also show that the generated task graph is the most succinct one
for a program when the program satisfies certain conditions.

I. INTRODUCTION

A class of implicitly parallel tasking systems [1]–[5] have
been proposed for ease of parallel programming. In these
programming models, programs are implicitly parallel: a
program is decomposed into tasks that are automatically
parallelized at runtime. By construction, these task-based
programs are free of common parallel programming errors,
such as data races and deadlocks, because the runtime system
inserts necessary synchronization and data movement on behalf
of programmers. Compared to explicitly parallel programming
models that require programmers to manage parallelism, syn-
chronization, and communication manually, implicitly parallel
tasking systems simplify parallel programming.

Dynamic dependence analysis is one of the key algorithms
in these implicit systems. A dynamic dependence analysis
algorithm takes a stream of tasks as input, analyzes depen-
dencies between tasks, and constructs a task graph, a DAG
of tasks where edges denote task dependencies constraining
the execution order of tasks. The runtime system then finds
the tasks that are mutually unreachable in this graph and
(potentially) runs them in parallel. The analysis is performed
dynamically because programs often have task dependencies
that can be determined only at runtime. A dynamic dependence
analysis must find all the task dependencies that are necessary
for preserving the sequential semantics of the program; any
parallel execution of a program must yield the same result as
the sequential execution.

In this paper, we report our initial efforts on formally
verifying the correctness of dynamic dependence analysis.
Because in task-based programming models programmers
depend on the runtime system’s dynamic dependence analysis
to parallelize programs, any bugs in the algorithm can be
extremely difficult to understand, let alone fix. Therefore, the
correctness of dynamic dependence analysis is essential for
the usability of implicitly parallel tasking systems. Although
straightforward implementations are trivially correct, implicitly
parallel tasking systems often use an optimized algorithm for
their dynamic dependence analysis, whose correctness is far
from obvious. To verify the correctness of realistic dynamic
dependence analysis algorithms, we design a model dependence
analysis algorithm Depoch that captures the essence of Legion’s
dynamic dependence analysis [6], and prove that it generates
sound task graphs, i.e., task graphs that describe only the
correct parallel executions of tasks.

The Depoch algorithm tries to minimize transitive depen-
dencies, i.e., dependencies that are transitively expressed by
other dependencies, because finding transitive dependencies is
redundant and unnecessary. The Depoch algorithm achieves this
goal by reducing the number of tasks that must be analyzed
by only considering epochs of tasks at the frontier of a
dynamically constructed task graph. This optimization is based
on the observation that any dependencies between a task and
those not at the frontier of the task graph are transitive. This
optimization avoids a quadratic enumeration of all possible
task dependencies, most of which are likely transitive. On the
other hand, this optimization complicates the soundness proof
of the Depoch algorithm, as the proof needs to show that in
every step the algorithm maintains the invariant that epochs
contain all the tasks at the frontier.

In addition to soundness, we discuss two optimality criteria
for dynamic dependence analysis: completeness and parsimony.
The soundness of a task graph means that it describes only
the correct executions of a program, but it does not assert how
much parallelism it exposes; a linear task graph that forces
tasks to run sequentially is sound but rarely useful, unless the
program has no parallelism at all. Therefore, it is desirable
that a task graph be complete; i.e., it should capture all the
correct parallel executions of tasks. We prove that the Depoch

algorithm generates task graphs that are not only sound but
also complete.

Among task graphs that express the same set of parallel

1 task F(x) reads(x),writes(x)
2 task G(x) reads(x)
3 while t < T do
4 for i = 0,2 do F(A[i]) end
5 if t % k == 0 then
6 for i = 0,2 do G(A[g(i)]) end
7 end
8 end

Fig. 1: Example Program

executions, one with fewest edges is most succinct, or parsimo-
nious. Although a parsimonious task graph is most economical
in terms of space, directly constructing parsimonious task
graphs is often avoided as it requires an expensive reduction of
transitive edges. We show that when a program satisfies a cer-
tain condition, the Depoch algorithm generates a parsimonious
task graph without a costly transitive reduction.

This paper makes two contributions:
• We present a formal framework for proving the correctness

of dynamic dependence analysis algorithms. To the best
of our knowledge, our paper is the first to present a formal
treatment of dynamic dependence analysis.

• We design a realistic, epoch-based dependence analysis
algorithm Depoch and prove its three key properties:
soundness, completeness, and parsimony.

The rest of this paper describes the task-based programming
model that is used throughout the paper in Section II, presents
the design of the model dependence analysis algorithm (Depoch)
and proves its properties in Section III, summarizes related
work in Section IV, and concludes in Section V.

II. TASK-BASED PROGRAMMING MODEL

A. Programs

Consider the example program in Figure 1. This program
launches two tasks F(A[0]) and F(A[1]) in each iteration, and
two other tasks G(A[g(0)]), and G(A[g(1)]) every k iterations.

Any attempt to statically identify parallel tasks in this
program is hampered in two ways. First, tasks G(A[g(0)]) and
G(A[g(1)]) use an opaque function g whose values are unknown
statically. Second, whether the if branch (lines 5-7) is taken in
each iteration cannot be precisely tracked, because the branch
condition is resolved only at runtime.

Implicitly parallel tasking systems do not have this limitation,
because they dynamically analyze a stream of tasks that a
program generates, rather than analyzing the program itself.
Assuming g(0) = g(1) = 0, the example program generates a
task stream of the following pattern:((

F(A[0]); F(A[1]);
)k
G(A[0]); G(A[0]);

)∗
.

Because all the function values and the control divergence are
resolved in this stream, dependencies between the tasks can
be precisely analyzed.

To model this aspect of implicitly parallel tasking systems,
we abstract a program as the sequence of tasks it generates:

Programs p ∈ Program = Task∗ p ::= ε | t; p

B. Tasks and Task Dependencies

Dependencies between tasks are determined by how tasks
access data. Tasks can access data stored in regions according
to the privileges requested by the task; tasks can read or write
data only when they have the corresponding read (rd) or write
(wr) privilege. In the program in Figure 1, every task F(A[i])
has read and write privileges on the input region A[i], and
every task G(A[i]) has only read privilege on A[i].

We define a task as a pair of a unique identifier and a set
of pairs of regions and privileges. (In the following, we use
℘(X) for the powerset of X .)

Tasks t ∈ Task = Id × ℘(Region × Privilege)
Regions r ∈ Region
Privileges pv ∈ Privilege = {rd,wr}

For simplicity, we assume that each region is unique. We write
t(pv) to denote a set of regions in task t whose privilege is
pv , i.e., t(pv) , {r | (r, pv) ∈ t}, and rgn(t) = t(rd) ∪ t(wr).

Tasks are dependent when they access the same region and
at least one can write to it.

Definition 1. We write t1 ⇔ t2 when tasks t1 and t2 are
dependent on each other, i.e.,

∃r, pv1, pv2.(r, pv1) ∈ t1 ∧ (r, pv2) ∈ t2
∧ (pv1 = wr ∨ pv2 = wr).

We write t1 ? t2 when tasks t1 and t2 are independent of each
other, i.e., t1 ? t2 = ¬(t1 ⇔ t2).

In the example program in Figure 1, each F(A[0]) task at
iteration t is dependent on F(A[0]) at iteration t − 1 and is
also dependent on two G(A[0]) tasks if t is a multiple of k.

The dependence in Definition 1 is syntactic; the definition
only requires interference between tasks’ privileges on the
same region. Implicitly parallel tasking systems check this
syntactic dependence between tasks to avoid performing
analysis of task bodies [7]. For this syntactic check to be
sound, implicitly parallel tasking systems require that each
task’s region privileges must match the behavior of that task.
This condition can be checked by a suitable type system [7].

Assumption 1. We assume that every task t and its semantics
[[t]] satisfy the following properties:

• ∀r.[[t]](h)(r) 6= h(r) =⇒ r ∈ t(wr) and
• ∀h, h′. (∀r ∈ t(rd).h(r) = h′(r)) =⇒

∀r ∈ t(wr).[[t]](h)(r) = [[t]](h′)(r),

where the semantics [[t]] : Heap → Heap of task t is an
opaque function on heap states and a heap state h is a map
from regions to data:

h ∈ Heap = Region → Data.

Note that the semantics [[t]] is not well-defined when task t is
non-terminating; we consider only terminating tasks to simplify
reasoning.

An important consequence of Assumption 1 is that indepen-
dent tasks can execute in parallel.

Lemma 1. Let t1 and t2 be independent tasks (i.e., t1 ? t2).
Then, their semantics satisfy the following property:

([[t1]] ◦ [[t2]])(h) = hC [[t1]](h)|t1(wr) C [[t2]](h)|t2(wr),

where f |X is the restriction of f to X and

(h1 C h2)(r) ,

{
h2(r) when r ∈ dom(h2)
h1(r) otherwise.

Proof. Follows directly from Assumption 1 of task semantics.

Note that semantics functions in this lemma do not use the result
of one another, allowing them to be evaluated simultaneously.

C. Schedules

The primary goal of implicitly parallel tasking systems is
to guarantee that a program has a sequential semantics; any
parallel execution of the tasks in a program must yield the
same result as the sequential execution. Assuming each task is
running atomically, i.e., running to completion once scheduled
on a processor, a parallel execution of tasks can be represented
by a set of linearized executions. For example, a parallel
execution of three tasks t1, t2, and t3 can be represented
by the following six linearized executions:

t1; t2; t3, t1; t3; t2, t2; t1; t3,
t2; t3; t1, t3; t1; t2, and t3; t2; t1.

Therefore, proving that an implicitly parallel tasking system
guarantees the sequential semantics for a program amounts
to showing that the system admits only the linearized task
executions that produce the same result as the sequential
execution.

To describe a linearized execution of tasks, we use a schedule,
which is a sequence of all the tasks in the program.

Schedules sc ∈ Schedule = Task∗ sc ::= ε | t; sc

The sequential execution of a program is the program itself.
Among all possible schedules of a program, implicitly

parallel tasking systems allow only the valid schedules; a
schedule is valid iff it respects program order of all the
dependent tasks in a program.

Definition 2. A schedule sc of program p is valid iff

p ` t1 �+ t2 ∧ t1 ⇔ t2 =⇒ sc ` t1 �+ t2,

where s ` a �+ b denotes that b occurs somewhere after a in
s. We write p ` sc when sc is a valid schedule of p.

Valid schedules are important because they produce the same
result as the sequential schedule.

Theorem 2. A valid schedule sc of program p satisfies

[[sc]] = [[p]],

where [[sc]] denotes the semantics of a schedule, which is a
composition of individual tasks’ semantics, i.e.,

[[t1; t2; . . . ; tn]] , [[tn]] ◦ · · · ◦ [[t2]] ◦ [[t1]].

Proof. Follows from Lemma 3 and the induction on the
program size.

Key to the proof of this semantics preservation is the fact
that order of running independent tasks makes no change to
the semantics, formally stated as the following commutativity
lemma.

Lemma 3. t1 ? t2 =⇒ [[t1]] ◦ [[t2]] = [[t2]] ◦ [[t1]]

Proof. Follows directly from Lemma 1 and commutativity of
the (C) operator when domains of operands are disjoint.

Note that invalid schedules sometimes preserve sequential
semantics as well when there are commutative tasks, i.e., tasks
t1 and t2 such that t1 ⇔ t2 ∧ [[t1]] ◦ [[t2]] = [[t2]] ◦ [[t1]]. Unlike
independent tasks, commutative tasks cannot run in parallel,
but they bring flexibility to scheduling as they can execute
in any order as long as they run atomically. Though some
implicitly parallel tasking systems exploit commutativity of
tasks in scheduling [1], [4], we do not consider commutative
tasks in our formalism, as they do not change the essence of
dynamic dependence analysis.

III. DYNAMIC DEPENDENCE ANALYSIS

A. Task Graphs

For the purpose of discovering valid schedules, dynamic
dependence analysis algorithms construct a task graph, which
concisely represents a set of schedules. A correct dependence
analysis of a program must yield a task graph that expresses
only the valid schedules of that program.

We define a task graph as a directed acyclic graph of the
tasks in a program, where each edge between nodes constrains
the order in which they can be scheduled. Any topological
ordering of nodes in this graph represents a schedule.

Task Graphs G = 〈T,D〉 ∈ TaskGraph
= ℘(Task)× ℘(Task × Task)

Definition 3. A schedule sc is a topological ordering of the
task graph 〈T,D〉 if it satisfies the following property:

∀t1, t2 ∈ T.〈t1, t2〉 ∈ D =⇒ sc ` t1 �+ t2.

We write [[G]] for a set of all the schedules expressed by G.

Note that only the nodes that are mutually unreachable in a
task graph represent tasks that can execute in parallel; if there
is a path between tasks in this graph, their execution must be
ordered.

A sound task graph for a program p is a task graph whose
schedules are all valid for p and a complete task graph for a
program p is the one that expresses all the valid schedules of
p.

Definition 4 (Soundness). We say a task graph G is sound
for a program p if ∀sc ∈ [[G]].p ` sc.

Definition 5 (Completeness). We say a task graph G is
complete for a program p if ∀sc.p ` sc =⇒ sc ∈ [[G]].

ta

tb tc

(a) Sound and complete G1

ta

tb tc

(b) Sound but incomplete G2

ta

tb tc

(c) Complete but unsound G3

ta

tb tc

(d) Unsound and incomplete G4

Fig. 2: Task graphs for program p1 in Example 1

The soundness of a task graph is essential for correctness
because an unsound task graph can express the schedules that
break sequential semantics. Completeness, on the other hand,
is an optimality criterion; if a task graph is incomplete, it might
serialize some tasks that could otherwise run in parallel.

Example 1. Suppose we have a program p1 = ta; tb; tc;, where

ta =
〈
1, {〈A,wr〉}

〉
, tb =

〈
2, {〈A, rd〉}

〉
, and

tc =
〈
3, {〈A, rd〉}

〉
The set Svalid of valid schedules for this program has two
schedules ta; tb; tc and ta; tc; tb.

The following table summarizes the soundness and the
completeness of each task graph in Figure 2.

Graph Sound? Complete? Reason
G1 Yes Yes [[G1]] = Svalid

G2 Yes No [[G2]] = {ta; tb; tc} ⊂ Svalid

G3 No Yes [[G3]] = Svalid ∪ {tc; ta; tb} ⊃ Svalid

G4 No No ta; tc; tb ∈ Svalid − [[G4]]
tb; tc; ta ∈ [[G4]]− Svalid

Another optimality criterion that we consider for task graphs
is parsimony; since multiple task graphs can express the same
set of schedules, we consider the one with the least number
of edges as parsimonious.

Definition 6 (Parsimony). We say a task graph G = 〈T,D〉 is
parsimonious if there exists no other task graph G′ = 〈T ′, D′〉
such that

[[G]] = [[G′]] ∧ ∃t1, t2.〈t1, t2〉 ∈ D ∧ 〈t1, t2〉 6∈ D′.

Parsimonious task graphs have no transitive edges between
nodes connected by some other path. Although the parsi-
monious task graph is most succinct, making task graphs
parsimonious is often avoided as it requires a costly transitive
reduction for the whole graph.

Example 2. Figure 3 shows task graphs G1 and G2 that are
sound and complete for program p2 = t1; t2; t3; t4, where

t1 =
〈
1, {〈A,wr〉}

〉
, t2 =

〈
2, {〈B,wr〉}

〉
,

t3 =
〈
3, {〈A,wr〉}

〉
, and t4 =

〈
4, {〈A, rd〉, 〈B, rd〉}

〉
.

Though G1 and G2 express the same set of schedules, only G2

is parsimonious, because G1 has a transitive edge between

t1 t2

t3 t4

(a) Non-parsimonious G1

t1 t2

t3 t4

(b) Parsimonious G2

Fig. 3: Task graphs for program p2 in Example 2

t1 and t4 and removing any edge from G2 yields an unsound
task graph expressing a different set of schedules.

B. Epoch-Based Dependence Analysis Algorithm Depoch

The simplest way to create a sound and complete task graph
is to enumerate all pairs of tasks and choose those between
dependent tasks, as in the following algorithm Dsimple.

Definition 7. Dsimple(p) , 〈p,E〉, where

E = {〈t1, t2〉 | p ` t1 �+ t2 ∧ t1 ⇔ t2}.

Lemma 4. Dsimple(p) is sound and complete for program p.

Proof. Follows directly from the definitions of soundness and
completeness.

However, the Dsimple algorithm is not useful, because it
performs many redundant and unnecessary checks to find
dependencies that are transitively expressed by other dependen-
cies. The resulting graph is almost always not parsimonious
because of edges representing those transitive dependencies.
Furthermore, the algorithm requires the entire sequence of tasks
to construct a task graph, although in reality this sequence can
be arbitrarily long as one task stream corresponds to the whole
execution of a program.

Example 3. Running Dsimple on program p2 in Example 2
yields the non-parsimonious task graph G1 in Figure 3
(Dsimple(p2) = G1).

More realistic algorithms find as few transitive dependencies
between tasks as possible and use data structures summarizing
the task history to avoid querying the entire task stream.
One notable example along this line is Legion’s epoch-based
dependence analysis algorithm [6]. The key idea behind this
algorithm is to use the Single-Writer, Multiple-Reader (SWMR)
invariant [8] to suppress transitive dependencies. Specifically,
the SWMR invariant states that in any given epoch of tasks for
a region, there can be only one writer task or multiple reader
tasks, and that there are only two possible cases when a new
task arrives:
C1 If both the current epoch and the new task are readers of

the region, then the new task joins the current epoch.
C2 If either the current epoch or the new task is a writer of

the region, then the new task starts a new epoch and the
current epoch becomes the previous epoch.

In both cases, the new task catches dependencies on all the
tasks in the previous epoch and any dependencies between
this new task and those that are not in the previous epoch are
transitive dependencies. Note that tasks still can have transitive

(E,P,G, p)
dep−→ (E,P,G, p)

rgn(t) 6= ∅ Rr = t(rd) Rw = t(wr)
E,P,G `dep (t, Rr, rd) E1, P1, G1

E1, P1, G1 `dep (t, Rw,wr) E2, P2, G2

(E,P,G, t; p)
dep−→ (E2, P2, G2, p)

rgn(t) = ∅ G′ = insert(G,∅, t)

(E,P,G, t; p)
dep−→ (E,P,G′, p)

E,P,G `dep (t, R, pv) E,P,G

E,P,G `dep (t,∅, pv) E,P,G

r ∈ R R′ = R− {r}
E,P,G `dep (t, r, pv) E1, P1, G1

E1, P1, G1 `dep (t, R′, pv) E2, P2, G2

E,P,G `dep (t, R, pv) E2, P2, G2

E,P,G `dep (t, r, pv) E,P,G

E′ = E[r 7→ swmr(E(r), P (r), t, pv)]
P ′ = P [r 7→ pv] G′ = insert(G,E′(r).2, t)

E,P,G `dep (t, r, pv) E′, P ′, G′

Fig. 4: Epoch-based dependence analysis algorithm Depoch

dependencies when they use multiple regions, because the
epochs are managed independently for each region. In the rest
of this section, we prove that this epoch-based dependence
analysis scheme is actually correct.

Figure 4 shows an idealized epoch-based dependence analy-
sis algorithm Depoch. The relation

dep−→ describes one step of
the Depoch algorithm for the first task in a program. For each
task, the algorithm first analyzes the regions with read privilege
and then those with write privilege.

The Depoch algorithm maintains the SWMR invariant in two
data structures. The epoch privilege P records whether the
current epoch of an region is of a writer (wr) or of readers (rd).
The epoch map E maps a region to its current and previous
epochs.

Epoch Maps E : Region → ℘(Task)× ℘(Task)
E ::= E∅ | E[r 7→ 〈T, T 〉]

Epoch Privileges P : Region → Privilege
P ::= P∅ | P [r 7→ pv]

An empty epoch map E∅ maps every region to a pair of empty
epochs and an empty epoch privilege P∅ returns wr for all
regions.

The epoch map and epoch privilege must satisfy two
conditions for the Depoch algorithm to produce a sound task
graph. First, they must satisfy the SWMR invariant. (In the
following definition, we use these notations: 〈A,B〉 · 1 , A
and 〈A,B〉 · 2 , B)

Definition 8. Epoch map E and epoch privilege P are valid
iff they satisfy the following conditions of the SWMR invariant.

1) Tasks in the previous or current epoch for a region have
privilege for that region.

∀r.∀t ∈ E(r) · 1 ∪ E(r) · 2.r ∈ rgn(t)

2) No multiple writers exist in any epoch.

∀r.|E(r) · 1| > 1 =⇒ ∀t ∈ E(r) · 1.r 6∈ t(wr)
∧ ∀r.|E(r) · 2| > 1 =⇒ ∀t ∈ E(r) · 2.r 6∈ t(wr)

3) The epoch privilege represents the privilege of the current
epochs.

∀r.P (r) = pv =⇒ ∀t ∈ E(r) · 1.r ∈ t(pv)

4) If the current epoch for a region is of readers, the previous
epoch should be of a writer.

∀r.P (r) = rd =⇒ ∀t ∈ E(r) · 2.r 6∈ t(rd)− t(wr)

We write valid(E,P) when E and P are valid.

Second, the epoch map must be consistent with the task graph.

Definition 9. The r-connected subgraph of task graph 〈T,D〉
is 〈Tr, Dr〉, where

Tr = {t ∈ T | r ∈ rgn(t)} and
Dr = {〈t1, t2〉 ∈ D | t1, t2 ∈ Tr}.

We write Gr to denote the r-connected subgraph of G.

Definition 10. Epoch map E is consistent with task graph G
iff E(r) and the r-connected subgraph Gr = 〈Tr, Dr〉 satisfy
the following conditions for every region r.

1) Tasks in the current epoch are at the frontier of Gr.

∀t ∈ E(r) · 1 ∩ Tr. 6 ∃t′.〈t, t′〉 ∈ Dr

2) All tasks in the previous epoch are connected to those
in the current epoch.

∀t ∈ E(r) · 2 ∩ Tr.∀t′ ∈ E(r) · 1 ∩ Tr.〈t, t′〉 ∈ Dr

We write consistent(E,G) when E is consistent with G.

Note that these consistency conditions ignore the tasks that no
longer exist in the task graph. This means that an epoch map
remains consistent with a task graph even after some tasks
finish their execution and are removed from that graph. In
Section III-C, we extend the Depoch algorithm to incorporate
task removals during dependence analysis and show that the
algorithm is still correct.

The function swmr adds a new task to the epochs while
maintaining the SWMR invariant.

swmr(〈T1, T2〉, pv1, t, pv2) ,{
〈T1 ∪ {t}, T2〉 when pv1 = pv2 = rd
〈{t}, T1〉 otherwise

Once the epochs are adjusted, the dependencies between a new
task and those in the previous epoch (written as E′(r) · 2 in

(E∅, P∅, G∅, t1; t2; t3; t4)
dep−→

(
A 7→ 〈{t1},∅〉 , A 7→ wr , t1 , t2; t3; t4

)
dep−→

(
A 7→ 〈{t1},∅〉
B 7→ 〈{t2},∅〉 , A 7→ wr

B 7→ wr
, t1 t2 , t3; t4

)

dep−→
(
A 7→ 〈{t3}, {t1}〉
B 7→ 〈{t2},∅〉 , A 7→ wr

B 7→ wr
,

t1 t2

t3

, t4
)

dep−→
(
A 7→ 〈{t4}, {t3}〉
B 7→ 〈{t4}, {t2}〉 , A 7→ rd

B 7→ rd
,

t1 t2

t3 t4

, ε
)

Fig. 5: Anatomy of Depoch(p2)

the rules) are registered to the task graph G using the function
insert:

insert(〈T,D〉, T ′, t) ,
〈T ∪ {t}, D ∪ {〈t′, t〉 | t′ ∈ T ′ ∩ T ∧ t′ 6= t}〉

At any point of dependence analysis, the Depoch algorithm
keeps the epoch map and epoch privilege valid, and also keeps
the epoch map consistent with the task graph.

Lemma 5.
valid(E,P) ∧ consistent(E,G) ∧
(E,P,G, t; p)

dep−→ (E′, P ′, G′, p) =⇒
valid(E′, P ′) ∧ consistent(E′, G′)

Proof. We proceed by case analysis on the relation
dep−→. Then,

the proof directly follows from the facts that the function swmr
preserves the validity of the epoch map and epoch privilege,
and that the function insert recovers the consistency of the
epoch map with the task graph after the new task t is added
to the graph.

The most important property of the Depoch algorithm is that
it produces a sound and complete task graph.

Definition 11. Depoch(p) = G, where G is a task graph that
satisfies the following condition:

(E∅, P∅, G∅, p)
dep−→
∗
(E,P,G, ε),

where G∅ denotes an empty task graph 〈∅,∅〉.

Theorem 6. [[Depoch(p)]] = [[Dsimple(p)]]

Proof. Let clo(G) be the transitive closure of G; i.e.,
clo(〈T,D〉) = 〈T,D+〉. It is straightforward to show that

clo(Depoch(p)) = clo(Dsimple(p))
=⇒ [[Depoch(p)]] = [[Dsimple(p)]].

We first prove clo(Depoch(p)) ⊇ clo(Dsimple(p)). We only
need to show that every two dependent tasks in p have a path
in Depoch(p), because for independent tasks t1 and t2, if a path
exists from from t1 to t2 in Dsimple(p), we can always find
another task t3 on that path such that t1 ⇔ t3 and t3 ⇔ t2.
We proceed by induction on the relation

dep−→
∗
. Let t be a

new task, G1 = 〈T1, D1〉 be the task graph before analyzing
t, and G2 = 〈T2, D2〉 be the task graph after analyzing t
(T2 = T1 ∪ {t} and D2 ⊃ D1). Pick a task t′ in G1 such that
t′ ⇔ t. If t′ is in one of the current epochs, t′ is at the frontier
of G, and thus by the definition of insert, 〈t′, t〉 ∈ D2. If t′ is

in one of the previous epochs, we can always find another task
t′′ in one of the current epochs such that 〈t′, t′′〉 ∈ D1 and
〈t′′, t〉 ∈ D2. Therefore, 〈t′, t〉 ∈ D+

2 . Finally, if t′ is not in
any of the epochs, there must be a task t′′′ in either one of the
epochs such that t′ ⇔ t′′′, due to the property of valid epochs
alternating their privileges. From the induction hypothesis, we
have 〈t′, t′′′〉 ∈ D+

1 . Then, we show 〈t′′′, t〉 ∈ D+
2 similarly as

in the first two cases. Therefore, we conclude 〈t′, t〉 ∈ D+
2 .

Now we prove clo(Depoch(p)) ⊆ clo(Dsimple(p)). Pick two
tasks t1 and t2 such that a path from t1 to t2 exists in Depoch(p).
We only need to show that a path from t1 to t2 also exists in
Dsimple(p) when t1 and t2 are independent, because otherwise
t1 and t2 obviously have an edge in Dsimple(p). Suppose t2 is
a new task. Because t1 and t2 have a path in Depoch(p), they
must share at least one region. Furthermore, for one of the
common regions, t1 must not be in any of the epochs, because
otherwise there would not be a path between t1 and t2, or t1
and t2 would be dependent. Then, we can always find another
task t3 in either one of the epochs for this common region
such that t1 ⇔ t3 and t3 ⇔ t2, due to the SWMR invariant.
Therefore, we can also find a path from t1 and t2 that goes
through t3 in Dsimple(p), which completes the proof.

Example 4. Figure 5 shows how Depoch analyzes program p2
in Example 2. Note that p2 = t1; t2; t3; t4, where

t1 =
〈
1, {〈A,wr〉}

〉
, t2 =

〈
2, {〈B,wr〉}

〉
,

t3 =
〈
3, {〈A,wr〉}

〉
, and t4 =

〈
4, {〈A, rd〉, 〈B, rd〉}

〉
.

The resulting task graph Depoch(p2) is sound and complete.

To characterize a set of programs for which Depoch produces
a parsimonious task graph, we must understand when Depoch

can introduce a transitive edge between tasks. Suppose that
Depoch adds a transitive edge from task t1 to task t3 when the
task graph already has two edges 〈t1, t2〉 and 〈t2, t3〉. Then,
tasks t1 and t3 must have a dependence for a region that is not
written by t2; otherwise, Depoch could not connect t1 directly
to t3, because of the SWMR invariant. In other words, Depoch

constructs a parsimonious task graph if tasks in the program
never form such a “triangle”, stated more generally as follows:

Theorem 7. Task graph Depoch(p) is parsimonious if program
p satisfies the following condition:

∀t1, t2.p ` t1 �+ t2 ∧ t1 ⇔ t2 =⇒ p ` t1 � t2 ∨
∀r ∈WR(t1, t2).∃t3.p ` t1 �+ t3 �+ t2 ∧ r ∈ t3(wr),

where WR(t1, t2) = (t1(wr) ∩ rgn(t2)) ∪ (rgn(t1) ∩ t2(wr)).

· · · dep−→
(
A 7→ 〈{t4}, {t3}〉
B 7→ 〈{t4}, {t2}〉 , A 7→ rd

B 7→ rd
,

t1 t2

t3 t4

, t5
)

dep−→
(
A 7→ 〈{t5}, {t4}〉
B 7→ 〈{t4, t5}, {t2}〉 , A 7→ wr

B 7→ rd
,

t1 t2

t3 t4

t5

, ε
)

Fig. 6: Last transition of Depoch(p3)

Proof. Suppose Depoch(p) is not parsimonious despite the con-
dition. Let 〈t, t′〉 ∈ D be a transitive edge in Depoch(p). Then,
there exists a path of edges 〈t, t1〉, 〈t1, t2〉, . . . , 〈tn−1, tn〉, and
〈tn, t′〉 for some n, where p ` t �+ t1 �+ · · · �+ tn �+ t′.
Pick a region r in WR(t, t′). (WR(t, t′) cannot be empty
because t⇔ t′.) Because Depoch only connects tasks in epochs,
task t′ was in the current epoch when t was in the previous
epoch. Furthermore, for any task ti such that r ∈ rgn(ti), we
have r 6∈ ti(wr) due to the validity of the epoch map. This
contradicts the theorem’s condition that there must exist a task
t′′ such that p ` t �+ t′′ �+ t′ and r ∈ t′′(wr).

Example 5. Program p2 in Example 2 satisfies the condition
in Theorem 7, and thus task graph Depoch(p2), which is the
same as G2 in Figure 3b, is parsimonious as discussed in
Example 2.

Example 6. Consider a slightly modified program p3 = p2; t5,
where

t5 =
〈
5, {〈A,wr〉, 〈B, rd〉}

〉
.

Note that t2(wr) ∩ rgn(t5) = {B} 6⊆ ∅ = t4(wr). Figure 6
shows that Depoch(p3) is not parsimonious, because there exists
transitive edge between t2 and t5.

The time complexity of Depoch for program p is O(|p||R|),
where R denotes the set of regions used in p. Since the number
of regions used in each task does not typically grow as the
program size increases, the effective time complexity is linear
in the program size, which is asymptotically better than the
quadratic time complexity of Dsimple.

C. Extension to Whole-Program Execution
Once a task graph is constructed, tasks in that graph are

executed based on the schedule of the graph. We model the
execution of tasks in a task graph as a process of finding one
of the schedules expressed by that graph.

The following transition relation exec−→ describes one step of
task graph execution.

(G, sc)
exec−→ (G, sc)

t ∈ T 6 ∃t′.(t′, t) ∈ D
T ′ = T − {t} D′ = {(t, t′) ∈ D | t, t′ ∈ T ′}

(〈T,D〉, sc) exec−→ (〈T ′, D′〉, sc; t)

(E,P,G, p, sc)
prog−→ (E,P,G, p, sc)

(E,P,G, p)
dep−→ (E′, P ′, G′, p′)

(E,P,G, p, sc)
prog−→ (E′, P ′, G′, p′, sc)

(G, sc)
exec−→ (G′, sc′)

(E,P,G, p, sc)
prog−→ (E,P,G′, p, sc′)

Fig. 7: Whole-program execution

In each transition, the rule finds a task with no predecessors in
the task graph and appends it to the schedule, signifying that
the task is executed. The task graph execution terminates once
it reaches an empty task graph. A complete execution of a task
graph finds one of the schedules expressed by that graph.

Definition 12. A schedule sc is an execution of task graph G
if it satisfies (G,∅)

exec−→
∗
(G∅, sc).

Lemma 8. Let sc be an execution of task graph G. Then,
sc ∈ [[G]].

Proof. We proceed by induction on exec−→
∗
. We define an

induction hypothesis that preserves the removed edges and
nodes in an accumulated graph, distinct from the graph being
executed. The current schedule is defined to be a schedule of the
accumulated graph, which when specialized to the definition of
initial and final states of execution gives the desired result.

In a real execution of a program, tasks do not wait until
the whole task graph is constructed, and rather the dynamic
dependence analysis and the task execution are interleaved,
because materializing the graph for the whole task stream
is excessive and even infeasible if the stream is long. This
interleaving can be modeled by our formalism as a non-
deterministic choice between the dynamic dependence analysis
and task graph execution at each step of program execution.
The transition relation

prog−→ in Figure 7 describes this step of
program execution.

The whole-program execution terminates once there is no
task to analyze or schedule. We prove that this whole-program
execution using the Depoch algorithm produces a valid schedule
of a program.

Theorem 9.

(E∅, P∅, G∅, p, ε)
prog−→
∗
(E,P,G∅, ε, sc) =⇒ p ` sc

Proof. Follows directly from Lemma 8, Theorem 6, and
Lemma 4, and induction on

prog−→
∗
.

Example 7. Figure 8 illustrates a sample execution of program
p3 in Example 5.

IV. RELATED WORK

Dynamic dependence analysis is key to providing sequential
semantics for programs in all implicitly parallel tasking
systems [1]–[5]. To the best of our knowledge, none of the

(E∅, P∅, G∅, t1; t2; t3; t4; t5, ε)
dep−→

(
A 7→ 〈{t1},∅〉 ,A 7→ wr , t1 , t2; t3; t4; t5 , ε

)
dep−→

(
A 7→ 〈{t1},∅〉
B 7→ 〈{t2},∅〉 ,A 7→ wr

B 7→ wr
, t1 t2 , t3; t4; t5 , ε

)

dep−→
(
A 7→ 〈{t3}, {t1}〉
B 7→ 〈{t2},∅〉 ,A 7→ wr

B 7→ wr
,

t1 t2

t3

, t4; t5 , ε
)

exec−→
(
· · · , · · · ,

t1 t2

t3

, t4; t5 , t2
)

exec−→
(
· · · , · · · ,

t1 t2

t3

, t4; t5 , t2; t1
)

dep−→
(
A 7→ 〈{t4}, {t3}〉
B 7→ 〈{t4}, {t2}〉 ,A 7→ rd

B 7→ rd
,

t1 t2

t3 t4

, t5 , t2; t1
)

dep−→
(
A 7→ 〈{t5}, {t4}〉
B 7→ 〈{t4, t5}, {t2}〉 ,A 7→ wr

B 7→ rd
,

t1 t2

t3 t4

t5

, ε , t2; t1
)

exec−→
(
· · · , · · · ,

t1 t2

t3 t4

t5

, ε , t2; t1; t3
)

exec−→
(
· · · , · · · ,

t1 t2

t3 t4

t5

, ε , t2; t1; t3; t4
)

exec−→
(
· · · , · · · ,

t1 t2

t3 t4

t5

, ε , t2; t1; t3; t4; t5
)

Fig. 8: Execution of p3 (the epoch map and privilege are elided when they remain the same as in the previous step)

systems have rigorously proven correctness of their dependence
analysis algorithms. We believe that our theoretical framework
can serve as a foundation for achieving formal correctness of
these algorithms.

A series of papers [9]–[11] formalize the semantics of a
core BSP (Bulk-Synchronous Parallel) language that models a
bulk synchronous subset of MPI. The key contribution of these
papers is a proof of deterministic semantics; a BSP program
yields the same result regardless of any non-determinism in
execution order. However, their semantic determinism is a
weak guarantee because it does not imply the correctness of
the execution. As demonstrated by Gava and Fortin [9], one
must still prove the equivalence between a BSP program and
its sequential counterpart, which is a non-trivial work on its
own and cannot be reused for other programs. On the other
hand, the formal guarantee in this paper is stronger because it
provides both determinism and correctness with respect to the
sequential semantics.

V. CONCLUSION

We present a theoretical framework for proving the correct-
ness of dynamic dependence analysis algorithms. We prove
that the epoch-based dependence analysis algorithm Depoch

produces a sound and complete task graph for a program. We
also show that the generated task graph is parsimonious when
the tasks in that program do not share more than one region.

ACKNOWLEDGMENT

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National
Nuclear Security Administration, award DE-NA0002373-1
from the Department of Energy National Nuclear Security

Administration, NSF grant CCF-1160904, and an internship at
Los Alamos National Laboratory.

REFERENCES

[1] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing
locality and independence with logical regions,” in Supercomputing (SC),
2012.

[2] E. Agullo, O. Aumage, M. Faverge, N. Furmento, F. Pruvost, M. Sergent,
and S. Thibault, “Achieving High Performance on Supercomputers with a
Sequential Task-based Programming Model,” Inria Bordeaux Sud-Ouest
; Bordeaux INP ; CNRS ; Université de Bordeaux ; CEA, Research
Report RR-8927, Jun. 2016.

[3] R. Hoque, T. Herault, G. Bosilca, and J. Dongarra, “Dynamic task
discovery in parsec: A data-flow task-based runtime,” in Proceedings
of the 8th Workshop on Latest Advances in Scalable Algorithms for
Large-Scale Systems, ser. ScalA ’17, 2017.

[4] M. Tillenius, “Superglue: A shared memory framework using data
versioning for dependency-aware task-based parallelization,” SIAM J.
Scientific Computing, vol. 37, no. 6, 2015.

[5] A. Zafari, E. Larsson, and M. Tillenius, “Ductteip: An efficient
programming model for distributed task based parallel computing,”
CoRR, vol. abs/1801.03578, 2018. [Online]. Available: http://arxiv.org/
abs/1801.03578

[6] M. Bauer, “Legion: Programming distributed heterogeneous architectures
with logical regions,” Ph.D. dissertation, Stanford University, 2014.

[7] S. Treichler, M. Bauer, and A. Aiken, “Language support for dynamic,
hierarchical data partitioning,” in Object Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 2013.

[8] D. J. Sorin, M. D. Hill, and D. A. Wood, “A primer on memory
consistency and cache coherence,” Synthesis Lectures on Computer
Architecture, vol. 6, no. 3, pp. 1–212, 2011.

[9] F. Gava and J. Fortin, “Formal semantics of a subset of the paderborn’s
bsplib,” in Ninth International Conference on Parallel and Distributed
Computing, Applications and Technologies, PDCAT 2008, Dunedin,
Otago, New Zealand, 1-4 December 2008, 2008, pp. 269–276.

[10] ——, “Two formal semantics of a subset of the paderborn university
bsplib,” in Proceedings of the 17th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing, PDP 2009,
Weimar, Germany, 18-20 Febuary 2009, 2009, pp. 44–51.

[11] J. Fortin and F. Gava, “Towards mechanised semantics of hpc: The bsp
with subgroup synchronisation case,” in Proceedings of the ICA3PP In-
ternational Workshops and Symposiums on Algorithms and Architectures
for Parallel Processing - Volume 9532, 2015, pp. 222–237.

