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Abstract—Accessing external resources (e.g., loading input
data, checkpointing snapshots, and out-of-core processing) can
have a significant impact on the performance of applica-
tions. However, no existing programming systems for high-
performance computing directly manage and optimize external
accesses. As a result, users must explicitly manage external
accesses alongside their computation at the application level,
which can result in both correctness and performance issues.

We address this limitation by introducing Iris, a task-based
programming model with semantics for external resources.
Iris allows applications to describe their access requirements
to external resources and the relationship of those accesses
to the computation. Iris incorporates external I/O into a
deferred execution model, reschedules external I/O to overlap
I/O with computation, and reduces external I/O when possible.
We evaluate Iris on three microbenchmarks representative of
important workloads in HPC and a full combustion simulation,
S3D. We demonstrate that the Iris implementation of S3D
reduces the external I/O overhead by up to 20×, compared
to the Legion and the Fortran implementations.

I. INTRODUCTION

Most existing programming systems for high-performance
computing (e.g., Legion [1], Sequoia [2], Charm++ [3],
and X10 [4]) have a closed world data model: all program
data are created, managed, and accessed exclusively inside
the runtime, and no external applications or systems can
manipulate the data. Of course, programs written in these
systems do routinely share data with external systems.
For example, scientific simulations checkpoint intermediate
results into storage for external applications to analyze. As
another example, a rendering application may load data from
an external application and generate dynamic visualizations.
These external interactions are done outside the semantics
of the programming model and therefore are treated conser-
vatively by the compiler and/or runtime system.

To the best of our knowledge, no existing parallel sys-
tems have defined semantics for runtime management and
optimization of interactions with external data. Systems
we surveyed defer the responsibility to applications, which
results in both correctness and performance issues:

• Data consistency must be explicitly controlled at the
application level. Applications often copy large por-

tions of external data into local memories for efficient
processing. Current systems require applications to
explicitly manage updates to these in-memory copies
and their propagation to the external resource. We
define a consistency model for external data, reducing
application complexity and the potential for errors when
accessing external data.

• Overlapping communication and computation is
difficult if the programming system does not have
knowledge of and control over external data transfers.
For example, most task-based parallel systems delay
the execution of tasks until all input data is in place.
If external data must be accessed by the application
inside of compute tasks, this may cause those tasks to
block and result in poor performance. When multiple
tasks contend over the same external data this issue can
become quite acute with degraded performance and the
potential for deadlock in some systems.

• Performance portability is more difficult to achieve
when applications are forced to explicitly manage both
synchronization and overlap of computation with access
to external data. System attributes such as processor
throughput, memory bandwidth, and I/O bandwidth
vary significantly from one HPC system to another. As
a result, performance portability is greatly reduced.

To address these challenges we first introduce external
resources, a model for data that is not exclusively owned
and accessed by a single application or runtime. Examples of
external resources are file systems, databases, and key-value
stores. Next we present Iris, a deferred execution program-
ming model with explicit semantics for managing external
resources. Iris is designed around three core concepts:

• Data model: Iris’s regions are data collections that
serve as inputs/outputs of computation. Regions are ab-
stracted from the physical resource which may hold the
data of the region. Each external resource is modeled
as one or more regions.

• Coherence model: Iris provides explicit coherence mod-
els for accessing regions. External resources are regions



with simultaneous coherence, meaning that there may
be multiple simultaneous readers and writers of the
region, and all updates are visible to all readers/writers.
The readers and writers for external resources can
include processes external to Iris as well as Iris tasks.

• Consistency model: A task may acquire a region with
simultaneous coherence to indicate when it is safe to
make copies of the region’s data (e.g., to make an in-
memory copy of data on disk for higher performance).
A release flushes updates to in-memory copies back to
the external resource, providing release consistency.

Iris builds on Legion’s [1] existing mechanisms for man-
aging regions and therefore inherits many of the Legion
optimizations which we extend to external resources. The
main contributions of this paper are as follows:

• We propose Iris, a deferred execution programming
model with explicit semantics for external resources.

• We present three important optimizations in Iris that
maximize I/O bandwidth utilization, extract additional
task parallelism and minimize data transfers.

• We evaluate Iris on three microbenchmarks and a full
combustion simulation, S3D. We show that, compared
to the Legion and Fortran implementations, the Iris
version of S3D reduces the I/O overhead by up to 20×.

II. PROGRAMMING MODEL

A core tenet guiding our design of Iris was to integrate
well with Legion’s asynchronous task-based programming
model with minimal changes. This was motivated in part
by our desire to provide the same semantics for internally
as well as externally managed resources, eliminating the
need for the application developer to reason about dis-
tinct, perhaps orthogonal, semantics for these resources.
This unified model also takes direct advantage of many
of the underlying optimizations employed by the Legion
implementation. While our current work focuses on Legion,
many of the ideas in Iris are applicable to other programming
systems such as Sequoia [2], Charm++ [3], and X10 [4]. We
discuss this in more detail in Section VII.

A. Legion’s Regions

In Legion, a region names a data collection. Regions are
first-class values in Legion and serve as the inputs and
outputs of computation [1]. It is worth emphasizing that
regions only name a data set. Regions are also mutable:
computations may directly modify the contents of regions.
Regions do not have to be materialized at all times, nor
do they commit to any particular data layout or physical
placement in a machine. A physical instance of a region
is a copy of the region’s data with a particular data layout
and stored in a specific place (e.g., on disk, in DRAM, in
a GPU framebuffer, etc.). There may be 0, 1, or multiple
physical instances of a region in existence at any time within
Legion. Allowing multiple instances of a region is necessary

for many optimizations, such as allowing multiple readers to
each have a local copy of the data for more efficient access.

B. Legion’s Tasks

Tasks are functions that perform computation on one or
more regions. Each task maintains two properties for regions
on which they operate:

• Privileges specify how the task will access each region,
which include read only, read-write, and reductions
with a commutative reduction operator.

• Coherence specifies how other potentially concurrent
tasks may access the same region: exclusive access
(task ordering must be preserved and no other task can
appear to access the region concurrently), atomic access
(tasks may be reordered, but no other task can appear
to have concurrent access), and simultaneous coherence
(visible updates from concurrent tasks are permitted).

Tasks are issued to the Legion runtime system in sequen-
tial program order, but the underlying runtime system is free
to perform optimizations that may reorder tasks and execute
them in parallel provided the results are consistent with the
serial order and the declared coherence modes on regions.

C. Legion’s Deferred Execution

Deferred execution decouples the launching of tasks from
when the tasks are executed. The task launch operation
returns immediately, and tasks are executed asynchronously
by the runtime. Asynchronous launches can be composed:
the results of launching task A may be passed as arguments
to the asynchronous launch of task B, even if A has not yet
completed. 1 Therefore, unless the program needs the result
of a task launch to make a control-flow decision, all tasks are
launched without any delay and tasks are never required to
block on any Legion operation. Deferred execution allows
Legion to hide long-latency operations by launching tasks
well in advance of when they actually run, which allows
Legion to discover other independent work that can be
executed at the same time.

D. Iris’s External Resources

In Iris, we model data and memory that is not exclusively
owned and accessed by Iris as an external resource. A simple
example of an external resource is a formatted file (e.g.,
an HDF5 file on disk) shared between an Iris application
that checkpoints intermediate results into it and an exter-
nal application that analyzes the results. Other examples
of external resources include objects in key-value storage
systems, databases in persistent storage, and opaque data
produced by external applications. There are three problems
we must address:

1As an aside, this design may sound like futures, but not all versions of
futures allow task calls to be composed—i.e., in some models passing a
future as a function argument blocks on the result of the future.
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(a) Step 0: Region r is previously mapped to 3 physical
instances on different nodes.
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(b) Step 1: Attach invalidates existing physical instances
of region r, and maps it to an external resource.
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(c) Step 2: Acquire removes the copy restriction on
region r and allows tasks to create local copies.
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(d) Step 3: Release invalidates local copies and flushes
updates back to the external instance.
Figure 1: Using an external resource in Iris.

• New primitives are required to associate an external
resource with a region and also to remove such an
association. We introduce two new operations, attach
and detach, in Section II-E.

• Iris tasks and external tasks may access the external re-
source concurrently necessitating some form of explicit
synchronization. We use existing Legion operations
for regions with simultaneous coherence, acquire and
release, for this purpose. While these operations predate
Iris, their semantics have not been previously presented
in the literature; we provide an overview in Section II-F.

• Supporting arbitrary external resources requires a
mechanism for supporting arbitrary data formats/lay-
outs. Our solution is presented in Section II-G.

E. Attach and Detach

Attach integrates external resources into Iris by associat-
ing an external resource with a region. For example:

attach(r, file)

associates the region r with an external file. There are
different versions of attach for each kind of external
resource (see Section V-A).

In Legion, a region is always associated with some data
set (though this may be empty) and is always associated
with zero or more physical instances. Thus, when attached
to an external resource, the region must first be disassociated
from its existing data. Attach invalidates all existing physical
instances associated with the region and makes the external
resource the only valid physical instance of the region.

Figures 1a and 1b illustrate an example of attach in Iris.
Before the attach operation, region r is mapped to three
physical instances. The attach operation associates r with
data in an external resource, as shown in Figure 1b. Attach
invalidates all three existing instances and maps region r to
the newly created external physical instance (i.e., instance
4). All subsequent tasks that use region r will now refer
to instance 4. It is worth noting that no actual external I/O
occurs as a result of the attach operation.

The detach operation disassociates a region from its
external resource. The Iris runtime defers the detach until
all tasks using the attached region have completed.

F. Acquire and Release

As discussed in Section I, the regions attached to ex-
ternal resources have simultaneous coherence. Part of the
semantics of simultaneous coherence is that tasks can see
the updates of other tasks concurrently accessing the region,
which implies that all the tasks use a single common phys-
ical instance. This design is appropriate in many situations
but prevents optimizations that rely on cached local copies.
For example, if an external resource resides on disk then
by default Iris tasks must perform disk I/O every time
they access the external resource. This can result in poor
performance for tasks that make frequent changes to regions.

In Legion, a task can create local copies (i.e., additional
instances in faster memories) of a region r with simultaneous
coherence by first issuing an acquire operation on r. The
acquire indicates that no external task will access the region
during the lifetime of the acquire so it is safe to allow
the runtime to make copies of the data. In Iris, an acquire
operation on a region attached to an external resource allows
tasks to operate on local copies of the external data.

When all tasks that use local copies have finished, a
release operation invalidates all local copies by flushing any
updates on these copies back to the original instance. The
external resource is thereby brought back to a consistent
state with the task updates to these temporary copies.

The semantics for acquire and release are similar to re-
lease consistency [5]: all writes between acquire and release
are visible to other tasks upon the release operation.

Figure 1c and 1d illustrate acquire and release. In Fig-
ure 1b, region r is attached to an external resource (i.e.,
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Figure 2: Transferring opaque data structures in Iris.

instance 4). All subsequent tasks that use region r before
an acquire operation access the external resource directly.
In Figure 1c, the application launches an acquire operation
which removes the copy restriction. Tasks that need r as
input can then use local copies (i.e., instance 5). When
the application has finished launching all tasks that need
local copies of region r, it launches a release operation that
flushes any local changes back to the external resource, and
invalidates all local copies2, as shown in Figure 1d.

G. Opaque Data Structures

Iris supports attaching external data that is opaque to Iris,
meaning its data layout is not understood by the runtime. In
addition to providing the generality to support many external
resources, there are specific use cases where opaque external
resources are appropriate. For example, applications with
security restrictions may need to hide the actual data from
Iris and only expose a narrow interface. Another example
is when the “data” is actually another application that only
produces the data on demand. Finally, a common use case
is a complex data structure whose format is application de-
pendent and which may vary depending on input parameters,
making encoding this format directly within Iris undesirable.

To allow tasks to access opaque external resources, Iris
provides a serdes (serialization-deserialization) interface for
applications to describe how to serialize regions attached
to opaque external resources into runtime managed buffers
and how to deserialize these buffers when creating a new
physical instance of the region in a destination memory.

Figure 2 illustrates how Iris uses the serialization/de-
serialization mechanism to copy instances associated with
opaque data structures. Instance 1 is initially attached to a
collection of binary trees owned by an external application.
The elements of the region r are just references to the roots
of the trees, and tasks call functions in a binary tree library
to do any required tree manipulations.

Note that to make a copy of the region, it is not suffi-
cient to simply copy the pointer contents—the binary trees
themselves, which are external to the region, will need to
be copied if the region is copied to a different address
space (i.e., a different node). In Figure 2, when copying
instance 1 to a remote node, Iris first serializes instance
1 to a DMA buffer on the local node. The DMA buffer
contains all necessary information to reconstruct the binary

2Iris runtime defers the actual invalidation of local copies until the local
copies have expired. By doing this, the Iris runtime eliminates data copies
in the case where the application re-acquires the same region.

//all databases are pre-attached to regions
while (!input.empty()) {

struct TaskInfo t = input.next_task();
Region r = t.region;
acquire(r);
if (t.type == QUERY) {

query(t, r);
} else {

update(t, r);
}
release(r);

}
//detach all regions after all tasks are done

Figure 3: Database application kernel task in Iris

trees. The Iris runtime then performs a bit-wise copy to
transfer the DMA buffer to the destination node. Finally,
the Iris runtime reconstructs a new instance (i.e., instance 2)
on the destination node by deserializing the DMA buffer.

An additional advantage of using a serialization/deserial-
ization interface is that it allows highly compressible data
to be transferred with minimum network bandwidth by first
serializing the opaque structure into a compressed form
and then deserializing it at the destination. Furthermore, the
serialization/deserialization interface provides an additional
mechanism for layout optimizations when moving data be-
tween internal and external resources in Legion.

III. AN EXAMPLE

To illustrate the design of Iris, we describe an application
that interacts with multiple external relational databases
stored on disk. The application accepts a stream of queries
(read-only operations) and updates (read-write operations)
to particular databases. To implement the application in Iris,
each database is modeled as a region and queries/updates
are modeled as tasks that operate on these regions.

In Figure 3 we present pseudo-code for the core applica-
tion loop in Iris. Here, input is a queue of input tasks
to be processed. TaskInfo is a structure that includes
all necessary information for performing a task. The loop
iteratively pulls new tasks from the queue and launches
the corresponding operations based on task information.
Every task is either a query, which needs read-only
privileges on the input database, or an update, which
requires read-write privileges.

For performance reasons, the query/update tasks copy the
database contents into local DRAM before executing their
application logic (not shown) and flush any changes back to
the external databases during update operations. To enable
local copies the main loop issues a pair of acquire and
release operations before and after launching the task.

Depending on the specific order of queries/updates to
databases, a number of optimizations are possible. We
illustrate two optimization scenarios. Figure 4 shows an
execution example where the application performs a query
and an update on different databases (i.e., r1 and r2). In
the figure, load and save indicate where actual external
data is loaded from and saved to the disk. Figure 4a shows
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without external resource integration.

Figure 4: An execution where the application performs a
query and an update on different database. Rectangles refer
to Iris tasks, diamonds represent internal Iris operations, and
solid arrows indicate data dependencies.

the serial execution order of operations. Because operations
on region r1 and r2 do not interfere (because the data is
from different databases), Iris can perform the operations in
parallel, as shown in Figure 4b.

We argue that our approach to integrating external re-
sources is especially beneficial when coupled with deferred
execution. Without external resource semantics in Iris, ap-
plications must explicitly perform external I/O within the
Iris tasks. Figure 4c shows an example in which the appli-
cation defines additional Iris tasks (illustrated as rectangles
“load” and “save”) for loading and saving data in external
databases. Performing explicit external I/O inside Iris tasks
can degrade the application’s overall performance because:
(1) the processors must block on external I/O, especially
in the case when multiple processors are competing for
external bandwidth; and (2) mixing computation with I/O
makes it difficult to overlap the I/O with computation. Iris
addresses both issues since all external I/O becomes internal
data transfers which do not block compute tasks and can be
scheduled to overlap with computation.

In addition to the benefits of deferred execution, Iris can
extract additional parallelism even in the case where the task
execution order is restricted by data dependencies. Figure 5
illustrates another execution where the application performs
a query and then an update on the same database. Using only
a single instance of the data, we cannot achieve parallelism
as the ordering of the two tasks cannot be changed. Reorder-
ing the two operations could result in the query(r1) task
observing changes made by the update(r1) task, which
could affect the result of the query(r1).

load
r1

query
r1

update
r1

save
r1

(a) Execution graph without the write-after-read (WAR)
optimization.
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(b) Execution graph with WAR optimization. Iris launches
an additional copy to create another local instance.

Figure 5: An execution where the application performs a
query and then an update on the same database.

However, if the query and update tasks operate on
different local copies they can be executed in parallel, and
doing so won’t affect the program’s final state (as shown
in Figure 5b). It is worth noting that even if Iris launches
an additional copy operation to create a second local copy
for parallel execution, this doesn’t necessarily indicate Iris
incurs the cost of additional external I/O. The load creates
a local copy inside the Iris runtime, and Iris could use this
copy as the source data for the second in the likely case that
that is cheaper than performing external I/O.

IV. OPTIMIZATIONS

In this section we discuss three important optimizations
for accessing external resources in Iris. Two of these,
deferred execution and write-after-read were illustrated in
Section III.

A. Deferred Execution

Iris decouples external I/O from computation and maps
them to separate operations. For example, in Figure 4b, a
single database update operation is decomposed into load,
update, and save operations in Iris. As a result, exter-
nal I/O and computation are executed by different threads
dedicated to certain types of Iris operations. In our imple-
mentation, Iris has dedicated DMA threads for handling data
movement (including both data copies within the Iris runtime
and accessing external resources) and compute threads for
executing application tasks.

Tasks are not expected to perform external I/O in Iris.
Instead, tasks attach external resources to regions and let
the runtime optimize external I/O. This separation allows
Iris to perform several scheduling optimizations, including:

• Better CPU utilization. Compute tasks that need to
access external resources do not block on external
I/O and therefore do not tie up CPU resources while
external I/O is being performed.

• Global Management of Resource Usage. All accesses
to an external resource are handled and performed



by the Iris runtime allowing Iris to reschedule I/O to
improve overall application performance.
Iris knows about all I/O operations for every me-
dia that holds external data. With this knowledge
Iris can reschedule data transfers to maximize band-
width utilization and minimize I/O contention. This I/O
rescheduling could not be performed at the application
level as the application is unaware of I/O performed by
the runtime system itself. For the database example in
Section III, the runtime system may also use the same
disk for checkpointing, resulting in disk I/O invisible
to the application. If the application issues database
save/load operations assuming it has the entire disk
bandwidth, both database accesses and checkpoints are
degraded, leading to poor overall performance.
Even in the absence of conflicting I/O operations within
the runtime, managing concurrent application-level ac-
cess to external resources directly within the application
is difficult. Applications often defer the complexity to
middleware libraries [6] [7], which can intercept I/O
operations made by the application as they are invoked.
While beneficial, this method is unable to reorder I/O
operations “in time” based on application-level data
dependencies, as can be done in Iris, as these models
do not defer operations. Deferring execution of tasks as
well as I/O operations managed directly in the runtime
allows Iris to fuse concurrent I/O operations while
preserving data dependencies.

B. Write-after-read

In the case where all write tasks launched between an
acquire/release pair have been completed (i.e., no further
updates will be made to the local copies of the external
resource), Iris can allow unfinished read-only tasks to use
a local copy and flush dirty data produced by write tasks
back to external resource by performing a release. This
early release is safe because: (1) all write tasks have been
completed, which guarantees that the update to the external
resource is the same as it would be after all tasks are
completed, (2) all unfinished read-only tasks (if any) will
still observe the correct data using the local copies, even
though data in the external resource has been modified, and
(3) future acquire operations will create new local copies of
the data from the external resource.

C. Reducing Data Transfers

When launching tasks that access external resources, Iris
can choose any up-to-date instance based on locality and
availability, efficiently eliminating redundant or avoidable
data transfers. Without external resource semantics, appli-
cations would have to manage all I/O in tasks, where the
straightforward approach is to use blocking I/O operations
and incur the full overhead of reading and writing to external
resources. An alternative is to manage data dependencies
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(a) Without external resource semantics, all tasks
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(b) Iris manages external resources and local copies,
allowing tasks to use local copies when available.

Figure 6: An example that illustrates reducing data transfers.

between tasks and their external resources directly at the
application level at the cost of great complexity.

Figure 6 shows an example in which two tasks access
external data on a remote node. Without external resource
semantics, the application cannot represent the external data
inside the programming model. Therefore, the only option is
that all tasks perform individual in-task data transfers (shown
as two arrows in Figure 6a). To eliminate redundant data
transfers, application developers can implement a library on
top of external resources to track all up-to-date copies and
direct tasks to use local copies if available. However, one
limitation is that it is only able to reason about copies created
in the application and is blind to copies made by the runtime.

Iris provides a straightforward way to reduce data trans-
fers. Figure 6b shows an execution for the above example in
Iris. The external data is labeled as an instance (i.e., instance
1) of region r after the attach operation. Iris tracks all data
dependencies and is aware that the two tasks on node 2 need
region r as an input. Consequently, the Iris runtime creates
a local copy (i.e., instance 2) of region r on node 2 and
direct the two tasks to use the local copy. The application
may launch future tasks that manipulate region r on node 2.
As long as the local copy (i.e., instance 2) stays up-to-date,
all future tasks on node 2 can directly exploit the local copy
without additional data transfers.

V. IMPLEMENTATION

We have implemented Iris in Legion [1], a high-
performance parallel runtime for distributed architectures.

A. API Extension

To support external resource semantics, we have extended
the Legion API with attach and detach operations. We
currently support the following external resources: normal



PhysicalInstace attach(
char *filename,
Region region,
const std::map<FieldID, char*> &fieldmap,
HDF5AccessMode mode);

Figure 7: Code snippet for attaching a HDF5 file.

files, HDF5 (hierarchical data format [8]) files, relational
databases, and other opaque data structures.

Figure 7 shows the C++ code snippet for attaching an
HDF5 file. This attach method attaches an external HDF5
file named filename to an existing region identified by
region and returns the physical instance that represents
the external data. A feature of Legion regions that we
have not yet explained is that the elements of regions can
themselves have structure [9]. In particular, each region has
a set of fields, and elements of the region can be thought
of as objects or structs with those fields. The fieldmap
expresses mapping from HDF5 datasets to different fields.

To support integration with opaque data structures we
have added custom serialization/deserialization operations
to the Legion API for copying opaque data structures. To
specify serialization/deserialization for a data type in Iris,
users must provide the following four methods:

• size, which computes the number of bytes needed for
serializing a single element.

• serialize, which serializes the element into a buffer
provided by the Legion runtime.

• deserialize, which deserializes a buffer argument
into an opaque data structure.

• destroy, which destroys all data associated with the
element argument.

B. Runtime Extensions

In addition to modifying the Legion API, we also ex-
tended the Legion runtime to support attach and detach.

To support copies of opaque data structures we have
extended the Legion data transfer subsystem by adding se-
rialization and deserialization components. The original Le-
gion data transfer mechanism supported only bit-wise copies
between memories. Moving a physical instance registered
with custom serialization/deserialization operations requires
first serializing the data into a DMA buffer. Next, the DMA
buffer is transferred to the destination node. Finally, the
runtime deserializes the DMA buffer to reconstruct a new
physical instance in the destination memory.

VI. EVALUATION

In this section we evaluate the performance of Iris and
the effectiveness of the three optimizations described in
Section IV by considering the effect of each optimization
individually as well as together.

We first consider three microbenchmarks implemented
in Iris: matrix multiplication (Section VI-A), a database
query/update simulator similar in spirit to the applica-
tion presented in Section III (Section VI-B), and a dis-
tributed scene rendering application (Section VI-C). Each
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Figure 8: Performance of matrix multiplication. The appli-
cation partitions an input matrix into 2048 sub-matrices of
256×256 double precision floats.

microbenchmark evaluates the performance of an individual
optimization detailed in Section IV. In Section VI-D, we
use S3D [10], a full combustion simulation, to evaluate the
combination of all three optimizations focusing on how Iris
reduces I/O-related overhead in a full application.

The experiments for all three microbenchmarks were
conducted on a four node cluster. Each node has two sockets
each with an Intel Xeon 5680 for a total of 12 physical cores
per node (24 threads with hyperthreading), 48GB DRAM
and a 250GB SSD drive. Nodes are connected with Mellanox
QDR Infiniband. For all microbenchmarks, the Iris runtime
dedicates 8 threads for computation and 4 threads for data
transfers per node. The S3D experiments were performed
on 64 nodes (i.e. 1024 cores) of the Titan supercomputer, a
Cray XK7 system at Oak Ridge National Laboratory [11].

A. Matrix Multiplication

We use matrix multiplication to illustrate the effectiveness
of deferred execution in accessing external resources. Our
version of matrix multiplication uses matrices generated by
an external application. The microbenchmark reads an input
matrix from a disk file, partitions the entire matrix into same-
sized sub-matrices, and multiplies every sub-matrix with an
in-memory matrix individually.

Figure 8 illustrates the impact of deferred execution. In
the baseline approach, we initially launch tasks that load the
entire input matrix into a region. After the load phase, we
launch tasks that perform matrix multiplication. The baseline
shows how long the I/O and computation take, respectively.

A second approach simulates an application developer’s
efforts to overlap I/O with computation at the application
level. The application performs in-task I/O at the beginning
of each task, with the expectation that different tasks are
executed at different speeds: some tasks can utilize the
entire disk I/O bandwidth when other tasks are performing
computation. This approach overlaps I/O with computation
to some extent, with I/O blocking overhead reduced by 44%
compared to baseline approach. However, the application
still spends 24% of the execution time blocking on disk I/O.

In Iris, the application attaches the input matrix to a
region. As discussed previously, by using attach/detach and
acquire/release, the application allows Iris to manage disk
I/O to maximize disk bandwidth and overlap I/O with
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Figure 9: Performance of the database queries and up-
dates benchmark. The application randomly generates 4096
database operations—the percentage of read queries relative
to the entire set of operations is labeled on the x-axis.

computation. Compared to the first two approaches, Iris
imposes negligible I/O blocking overhead.

B. Database Queries and Updates

The database query/update simulator, introduced in Sec-
tion III, operates on a number of shared databases stored on
disk. The application randomly generates query tasks (read-
only) and update tasks (read-write); the specified order of
the tasks is the order in which they are generated. We use
this microbenchmark to measure the benefit of the write-
after-read optimization.

The baseline approach attaches each database to an in-
dividual region and acquires the region before launching
query or update tasks in Iris. As a result, all the benefit of
deferred execution is exploited in the baseline approach. The
write-after-read version also incorporates the write-after-read
optimization described in Section IV-B.

Figure 9 shows the effect of the write-after-read optimiza-
tion. We control the ratio between queries and updates to
observe how write-after-read behaves in different workload
distribution scenarios. When all operations are queries (i.e.,
x = 1 in the figure), the baseline and write-after-read achieve
the same performance. In this scenario, there are no writes
so the write-after-read optimization is not exercised but
deferred execution still hides I/O latency and the lack of data
dependencies makes the workload embarrassingly parallel.
At the other extreme in which all operations are writes (i.e.,
x = 0) the two approaches yield the same performance
as the write-after-read optimization is not exercised. The
absolute performance for this workload (all writes) is lower
as the write tasks on each database must be serialized to
ensure coherence. At intermediate points (i.e., 0 < x < 1),
Iris is able to reduce the execution time by up to 43%,
with the maximum benefit occurring around x = .75. The
write-after-read optimization facilitates significantly more
concurrency of tasks in this regime resulting in significant
performance improvements.

C. Scene Rendering

Scene rendering, generating a pictorial representation of
objects in the scene, is a standard application in computer

graphics. Each object is a combination of properties such as
shape, velocity, position, and texture. Our microbenchmark
uses simple 2-D scenes, consisting of basic textured shapes
(e.g., circles, triangles, and squares) moving in the scene.

All objects are managed by an external application resid-
ing on a single node (the master node), while the execution
of the rendering application is distributed across multiple
nodes. The objects may carry high-resolution texture/images
making the efficiency of transferring the objects critical to
the benchmark’s overall performance. We use this rendering
application to test the benefit of reducing data transfers as
described in Section IV-C.

As objects in a scene may have different shape rep-
resentations and different texture resolutions (i.e., various
texture sizes) each object is presented to Iris as a pointer
to an opaque data structure that holds all the information
describing the object. The external application supports an
interface for Iris tasks to call rendering methods, which
include (1) rendering a portion of the background scene with
the object; (2) modifying the properties of the object (e.g.,
velocity and position changes); and (3) the serialization and
deserialization methods used by the Iris runtime to move the
objects between different compute nodes.

Using these primitives we implemented a simple iteration-
based rendering application. The application periodically re-
renders the scene by assigning a portion of the background
scene and all objects intersecting with that portion of the
scene to a task. As different tasks are rendering disjoint
parts of the scene, all tasks can be executed in parallel. The
external application that stores and manages all objects is
running on the master node, and every node (including the
master node) renders a sub-scene.

The baseline approach attaches all objects to a 1-D region
(the actual data type of the region is a pointer as described
earlier) with each task acquiring a subset of objects to render
the sub-scene. The optimized approach also reuses local
copies when possible to reduce inter-node data transfers.

In the baseline approach, every task requires all objects
that intersect with its sub-scene as an input. Without re-
ducing data transfers all tasks fetch the objects from the
master node. In the optimized approach, some tasks can
directly access local copies of objects used by the previous
timestep if the objects were not modified in the previous
step. As Figure 10 illustrates, the ability to reduce data
transfers results in significant performance improvements as
inter-node data transfers begin to dominate total runtime
at four nodes. Even though the two approaches spend the
same amount of computation time in each iteration Iris
reduces inter-node data transfers by up to 75%, significantly
improving scalability and total performance.

D. S3D

S3D is a full application that performs direct numerical
simulation of turbulent combustion. S3D was one of the
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Figure 10: Performance of an iteration-based distributed ren-
dering application. The microbenchmark loads 1024 objects
from an external resource, with each object including 1-6MB
of data representing the object.

six applications used to determine the Titan supercomputer’s
readiness for science applications. Direct numerical simula-
tion attempts to resolve the smallest spatial and temporal fea-
tures present in combustion, requiring a very large amount of
state (O(102−103) variables at each of O(109) grid points).
This state is much too large to save for every timestep,
so scientists must decide how often to save snapshots of
the state, balancing the I/O overhead against the risk of a
system fault/interrupt that would necessitate restarting the
application from a previous snapshot.

S3D was originally implemented in Fortran, but recent
efforts have ported it to OpenACC[12] and to Legion[9]
to take advantage of the heterogeneous processing power
on Titan. The Iris version of S3D builds on top of the
Legion implementation. Instead of explicitly performing file
I/O to save snapshots within the Legion tasks, the Iris
version attaches the disk files to regions and allows the
runtime to perform the file I/O asynchronously from the
main simulation loop, which can reduce (hide) I/O overheads
and total runtime. For this experiment, we focus on the I/O
overhead as a function of the snapshot interval, measuring
it for the existing Fortran and Legion versions, as well as
our Iris version. Results are illustrated in Figure 11.

For the Fortran version, a common choice is to snapshot
every 100th timestep, which results in an I/O overhead of 0.1
seconds/iteration. The overhead increases linearly with the
snapshot frequency, exceeding 0.5 seconds/iteration if every
20th timestep is snapshotted. The Legion version has a much
faster simulation loop than the Fortran version but does
nothing to improve the file I/O overheads. As is expected
from Amdahl’s Law, this causes the percentage overhead of
file I/O to increase significantly relative to computation time.
Even at a snapshot interval of 100 timesteps, the percentage
overhead of file I/O is approximately 14%.

By performing the three optimizations described in Sec-
tion IV, the Iris version achieves a relatively constant I/O
overhead of 0.02-0.03 seconds/iteration from a 100 timestep
interval to a 20 timestep interval. This shows that Iris’s
optimizations can efficiently hide I/O overheads and reduce
total runtime. The Iris version of S3D nearly eliminates
the dependence on the snapshot interval (up to bandwidth
saturation of the file system), allowing scientists to adjust
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Figure 11: Performance of the S3D application running on
64 nodes (i.e., 1024 cores) of the Titan supercomputer.

the snapshot interval based only on disk usage and system
fault concerns and not the overhead of the I/O.

VII. RELATED WORK

We summarize the most relevant work in integrating
external resources with parallel systems.

A. Deferred Execution Parallel Systems

To the best of our knowledge, none of the existing parallel
programming systems have defined semantics and mecha-
nisms that allow the runtime system to manage and optimize
external resource interaction with respect to computation.
We summarize how existing parallel systems interact with
external resources.

1) Parallel Systems for High-Performance Computing:
Sequoia [2] is a portable runtime interface mapping data
and computation to parallel machines with deep memory
hierarchies. Sequoia includes the idea of using disk as a
memory, but disk is modeled as internal storage rather than
an external resource. Sequoia does not provide mechanisms
for accessing external resources so applications must imple-
ment external I/O within tasks. In Iris, disk is used in two
different ways: (1) it borrows Sequoia’s idea of modeling
disk as a large-capacity memory with low bandwidth and
long latency, and (2) disk is also considered as an external
resource that shares data with external systems.

MPI [13] provides integration with external resources
through the MPI-IO interface. A number of optimizations
have been developed in MPI-IO, including I/O aggrega-
tion [7]. While MPI-IO provides an asynchronous API
for file I/O, effectively overlapping computation requires
the application developer to identify work to overlap and
schedule this work during the asynchronous I/O. Legion
automates this overlap by scheduling independent tasks
concurrently with I/O. Moreover, MPI-IO does not maintain
consistency between external data in files and application-
level copies in memory, and therefore misses optimizations
such as reducing data transfer to/from external resources.

Charm++ [3] is a portable programming system for
complex parallel applications. Charm++ is integrated with
automatic checkpoint-based fault tolerance [14]. However,
Charm++ does not support APIs for accessing external
resources, so applications must explicitly perform in-task
I/O to access external data and may miss Iris’s optimizations,
such as write-afer-read and reducing data transfers.



X10 [4] is a Java-based member of the PGAS family
of languages. No special support for external resources is
provided in X10, although as data objects and the places in
which they reside are not migratable any data object in the
system can in principle interface with an external resource.

2) Parallel Systems for Distributed Data Centers: Exist-
ing parallel systems for data centers (e.g., DryadLINQ [15],
Spark [16], and MapReduce [17]) are well-integrated with
on-disk storage systems. For example, all data objects in
DryadLINQ are saved into distributed partitioned files, and
therefore all LINQ queries must retrieve input from disk and
write output to disk. This design persists intermediate results
at the cost of introducing checkpoint overhead.

Most parallel systems for data centers use immutable
data as their basic building block, which simplifies the
implementation of failure recovery. Since read-only regions
provide the same abstraction as immutable blocks of data,
the ideas of Iris could also be applied to these systems.

B. I/O Middleware

I/O middleware libraries such as HDF5 [8] provide
portable and extensible data models for managing persistent
data. HDF5 is designed to support flexible and efficient I/O
for complex data structures, which makes it an ideal toolkit
for parallel systems with a hierarchical data model. HDF5
does not support deferred execution and does not maintain
consistency between different copies of the same data. As
a result, the optimizations discussed in this paper cannot be
achieved solely within HDF5.

C. Memory Consistency

The idea of acquire and release operations in Iris is bor-
rowed from the release consistency memory model proposed
by Gharachorloo et al. [5]. Release consistency requires that
all writes to memory before a release operation must be
visible to all reads after a subsequent acquire operation. In
Iris, the acquire/release operations provide this semantics.

VIII. CONCLUSION

We have presented Iris, a task-based deferred execution
model with external resources. Iris defines semantics for
external resources and provides a number of optimizations
for reducing external I/O overhead. We have presented
an implementation, which is built on Legion and includes
all the optimizations discussed in the paper. Finally, we
have evaluated Iris on three microbenchmarks and a full
combustion simulation.
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