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Abstract—This paper presents the development of a Regent
based implicitly parallel meshfree solver for inviscid compressible
fluid flows. The meshfree solver is based on the Least Squares
Kinetic Upwind Method (LSKUM). The performance of the
Regent parallel solver is assessed by comparing with the explicitly
parallel versions of the same solver written in Fortran 90 and
Julia. The Fortran code uses MPI with PETSc libraries, while the
Julia code uses an MPI + X alternative parallel library. Numerical
results are shown to assess the performance of these solvers on
single and multiple CPU nodes.

Index Terms—Regent, Legion, Fortran, Julia, MPI+X,
LSKUM, Meshfree methods

I. INTRODUCTION

Modern high performance computing platforms have become
highly heterogeneous as the computing devices are composed
of multi-core CPUs and GPUs with varying specifications. It
is well-known that the numerical simulation of many complex
fluid flow problems require massively parallel computational
facilities. Systems which can asynchronously schedule the
simultaneous execution of tasks on both CPUs and GPUs are
described in the literature [1]–[3], but have not yet seen broad
adoption in large-scale HPC applications. For example, the
well-known CFD codes such as SU2 [4] uses CPUs while
OpenFOAM [5] and PyFR [6] can run on either CPUs or
GPUs, but not both simultaneously. Furthermore, it will be of
great advantage if the code is based on implicit parallelism as it
significantly enhances readability, portability and productivity.
The Regent programming language [7] precisely addresses
these concerns.

Regent is a high level, task-based programming language
that presents a viable alternative to traditional distributed
programming through its support for implicit parallelism.
Programs consist of tasks or functions marked as being eligible
for parallel execution. Tasks appear to the programmer as if
they execute in sequential, program order; the programming
system is responsible for the extraction of parallelism. Regent
also lets users run the same code on vastly different machine
architectures with virtually zero application changes. Regent’s

optimizing compiler together with the underlying task-based
Legion runtime system [1] is able to produce programs that are
able to achieve performance on par with traditional explicitly
parallel applications while keeping the code easier to read,
write, debug and maintain.

The long term aim of our research is to develop a three-
dimensional hybrid CFD solver that is capable of exploiting
the full computing power of heterogeneous platforms. Towards
this objective, in the present work we have developed a two-
dimensional implicitly parallel solver in a meshfree framework
[8] for inviscid compressible fluid flows.

This paper is organised as follows. Section II presents
the basic theory of the meshfree solver based on the least
squares kinetic upwind method. Section III discusses details
pertaining to the construction of a Regent based meshfree
solver. In Section IV, numerical results are shown to analyse the
computational performance of the solver. Finally, conclusions
are drawn in Section V.

II. THE KINETIC MESHFREE METHOD: q-LSKUM

A. Basic theory of LSKUM

The Least Squares Kinetic Upwind Method (LSKUM) [9]
belongs to the family of kinetic theory based upwind schemes
for the numerical solution of Euler or Navier-Stokes equations
that govern the compressible fluid flows. These schemes are
based on the moment-method-strategy [10], where an upwind
scheme is first developed at the Boltzmann level and after
taking suitable moments, we arrive at an upwind scheme
for the governing conservation laws. LSKUM requires a
distribution of points, which can be structured or unstructured.
The point distributions can be obtained from simple or chimera
point generation algorithms, quadtree, or even advancing front
methods [11]. In this section, we briefly present the basic
theory of LSKUM for two-dimensional (2D) Euler equations
that govern the inviscid compressible fluid flows.



In the differential form, the Euler equations in two-
dimensions are given by

∂U

∂t
+
∂G

∂x
+
∂H

∂y
= 0 (1)

Here, U is the conserved vector, G and H are the flux
vectors along the coordinate directions x and y respectively.
The conservation laws in eq. (1) can be obtained by taking Ψ
- moments of the 2D Boltzmann equation in the Euler limit.
In the inner product form, this can be written as
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Here, F is the Maxwellian velocity distribution function and
Ψ is the moment function vector. v1 and v2 are the molecular
velocities along the coordinate directions x and y respectively.
The inner product 〈Ψ, f〉 is defined as

〈Ψ, f〉 =

∫
R+×R2

Ψf (v) dvdI (3)

Using Courant-Issacson-Rees (CIR) splitting [12] of molec-
ular velocities, an upwind scheme for the Boltzmann equation
in eq. (2) can be constructed as

∂F

∂t
+ v+1

∂F

∂x
+ v−1

∂F

∂x
+ v+2

∂F

∂y
+ v−2

∂F

∂y
= 0 (4)

where, the split velocities v±1 and v±2 are defined as

v±1 =
v1 ± |v1|

2
, v±2 =

v2 ± |v2|
2

(5)

The basic idea of LSKUM is to obtain discrete approxima-
tions to the spatial derivatives using least squares principle. We
illustrate this approach to determine Fx and Fy at a point P0

using the data at its neighbours. The set of neighbours, also
known as the stencil of P0 is defined by

N (P0) = {Pi : d (P0, Pi) < ε} (6)

where d (Pi, P0) is the Euclidean distance between the points
P0 and Pi. ε is the user defined characteristic linear dimension
of N (P0).

To derive the least squares approximation of Fx and Fy,
consider the Taylor series expansion of F up to linear terms
at a neighbour point Pi around P0,

∆Fi = ∆xiFx0+∆yiFy0+O (∆xi,∆yi)
2
, i = 1, . . . , n (7)

where ∆xi = xi − x0, ∆yi = yi − y0, ∆Fi = Fi − F0 and
n represents the number of neighbours of the point P0. For
n ≥ 3, eq. (7) leads to an over-determined linear system, which
can be solved using the least squares principle. The first-order
accurate least squares approximations to the partial derivatives
Fx and Fy at the point P0 are then given by[

F 1
x

F 1
y

]
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]
(8)

In the above formulae, the superscript 1 on Fx and Fy

denotes first-order accuracy. Taking Ψ - moments of eq. (4)

along with the formulae in eq. (8), we obtain the semi-discrete
form of the first-order least squares kinetic upwind scheme for
2D Euler equations,
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Here, G± and H± are respectively the kinetic split fluxes
[8] along x and y directions. The least squares formulae for
the split flux derivatives G±

x and H±
y are given by
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Note that G±
x and H±

y are evaluated using the split stencils
N±

x (P0) and N±
y (P0) respectively. These subsets are defined

by

N±
x (P0) = {Pi | Pi ∈ N (P0) ,∆xi = xi − x0 ≶ 0}

N±
y (P0) = {Pi | Pi ∈ N (P0) ,∆yi = yi − y0 ≶ 0}

(11)

B. Second-order accuracy using q-variables
An efficient way of obtaining second-order accurate approx-

imations to the spatial derivatives Fx and Fy is by employing
the defect correction method. An advantage of this approach is
that the dimension of the least squares matrix remains the same
as in the first-order scheme. To derive the desired formulae,
consider the Taylor expansion of F up to quadratic terms,

∆Fi =∆xiFx0 + ∆yiFy0 +
∆xi

2
(∆xiFxx0 + ∆yiFxy0)

+
∆yi

2
(∆xiFxy0 + ∆yiFyy0)

+O (∆xi,∆yi)
3
, i = 1, . . . , n

(12)

The basic idea of the defect correction procedure is to cancel
the second-order derivative terms in the above equation by
defining a modified ∆Fi so that the leading terms in the
truncation errors of the formulae for Fx and Fy are of the
order of O (∆xi,∆yi)

2. Towards this objective, consider the
Taylor series expansions of Fx and Fy up to linear terms

∆Fxi
=∆xiFxx0

+ ∆yiFxy0
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2
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2
(13)

where ∆Fxi = Fxi −Fx0 and ∆Fyi = Fyi −Fy0 . Using these
expressions in eq. (12), we obtain

∆Fi =∆xiFx0 + ∆yiFy0 +
1

2
∆xi∆Fxi +

1

2
∆yi∆Fyi

+O (∆xi,∆yi)
3
, i = 1, . . . , n

(14)

We now introduce the modified perturbation in Maxwellians,
∆F̃i and define it as

∆F̃i =∆Fi −
1

2
∆xi∆Fxi

− 1

2
∆yi∆Fyi

=∆Fi −
1

2
∆xi (Fxi

− Fx0
)− 1

2
∆yi (Fyi

− Fy0
)

(15)



Using ∆F̃i, eq. (14) reduces to

∆F̃i = ∆xiFx0 + ∆yiFy0 +O (∆xi,∆yi)
3
, i = 1, . . . , n

(16)
Solving the modified over-determined system using least
squares, the second-order accurate approximations to Fx and
Fy at the point P0 are given by[
F 2
x

F 2
y

]
=
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]
(17)

Note that the superscript 2 on Fx and Fy denotes second-
order accuracy. The above formulae satisfy the test of k-
exactness as they yield exact derivatives for polynomials
of degree ≤ 2. Furthermore, these formulae have the same
structure as the first-order formulae in eq. (8), except that the
second-order approximations use modified Maxwellians. In
contrast to first-order formulae that are explicit in nature, the
second-order approximations have implicit dependence as the
evaluation of Fx and Fy at the point P0 requires the values of
Fx and Fy at P0 and its neighbours a priori, so that ∆F̃i in
eq. (15) can be estimated.

Taking Ψ - moments of the spatial terms in eq. (4) along
with the formulae in eq. (17), we get the second-order accurate
discrete approximations for the kinetic split flux derivatives as
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where, the perturbations ∆G̃
±
i and ∆H̃

±
i are defined by
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A drawback of this formulation is that the second-order scheme
thus obtained reduces to first-order at the boundaries as the
stencils to compute the split flux derivatives may not have
enough neighbours. Furthermore, ∆F̃i is not the difference
between two Maxwellians. Instead, it is the difference between
two perturbed Maxwellians, given by

∆F̃i = F̃i − F̃0 =

{
Fi −

1

2
(∆xiFxi

+ ∆yiFyi
)

}
−
{
F0 −

1

2
(∆xiFx0 + ∆yiFy0)

} (20)

Unlike Fi and F0, the distribution functions F̃i and F̃0 may
not be non-negative and therefore need not be Maxwellians.

In order to preserve positivity, instead of Maxwellians, we
employ the q-variables [13], [14] in the defect correction
procedure to obtain second-order accuracy. Note that the
transformations F ←→ q and U ←→ q are unique and
therefore the q-variables can be used to represent the fluid flow

at the macroscopic level. The second-order LSKUM based on
q-variables is then obtained by replacing ∆G̃

±
i and ∆H̃

±
i in

eq. (19) with ∆G±
i (q̃) and ∆H±

i (q̃) respectively. The new
perturbations in split fluxes are defined by

∆G±
i (q̃) =G± (q̃i)−G± (q̃0)

∆H±
i (q̃) =H± (q̃i)−H± (q̃0)

(21)

Here, q̃i and q̃0 are the modified q-variables, given by

q̃i = qi −
1

2

(
∆xiqxi + ∆yiqyi

)
q̃0 = q0 −

1

2

(
∆xiqx0 + ∆yiqy0

) (22)

The necessary condition for obtaining second-order accurate
split flux derivatives is that both qx and qy in eq. (22) should
be second-order. Note that these components are approximated
using full stencil in a way similar to that of Fx and Fy in
eq. (17). The resulting least squares formulae for q2

x and q2
y

are implicit in nature and need to be solved iteratively. These
sub-iterations are called inner iterations. In the present work,
numerical simulations are performed with 3 inner iterations.
Once evaluated, the q̃-variables are used to compute ∆G± (q̃)
and ∆H± (q̃) at the first step and then the split flux derivatives
in eq. (18).

An advantage of this approach is that higher-order accuracy
can be achieved even at boundary points as q-variables can be
combined with the kinetic wall [10] and outer boundary [15]
conditions. Furthermore, the distribution functions F (q̃i) and
F (q̃0) corresponding to q̃i and q̃0 are always Maxwellians
and therefore preserves the positivity of numerical solution.

Finally, the state-update formula for steady problems can be
constructed by replacing the pseudo-time derivative in eq. (9)
with a suitable discrete approximation and local time stepping.
In the present work, the solution is updated using a four-stage
Runge-Kutta (SSP-RK3) [16] time marching algorithm.

III. IMPLICITLY PARALLEL MESHFREE SOLVER

In this section, we present the development and imple-
mentation of an implicitly parallel meshfree solver based on
Regent. Typically, the development of a parallel CFD solver
involves two important steps, namely, domain decomposition
and data communication and synchronization between different
partitions. We will consider both aspects of the Regent
implementation and draw comparisons with Fortran and Julia.

Let us first consider the general outline of the solver,
presented in Algorithm 1, in context of the theory presented
in Section II. Each time iteration of the numerical scheme
involves the computation of local time step, four stages of
the Runge-Kutta scheme and L2 norm of the residue. The
subroutine q_variables() evaluates the q-variables, while
q_derivatives() computes the second order accurate
approximations of qx and qy along with inner iterations. The
most time consuming routine is the flux_residual(),
which computes the sum of split flux derivatives in eq. (9).
The flow solution at each Runge-Kutta step is updated in



state_update(rk). The domain decomposition is per-
formed in preprocessor() while postprocessor()
includes all output operations. N represents the number of
pseudo-time iterations required to achieve a desired conver-
gence in the solution.

Algorithm 1: Meshfree solver based on q-LSKUM

subroutine q-LSKUM
call preprocessor()

for n← 1 to n ≤ N do
call timestep()

for rk ← 1 to 4 do
call q_variables()
call q_derivatives()
call flux_residual()
call state_update(rk)

end
call residue()

end
call postprocessor()

end subroutine

To understand how domain decomposition is done in the
Regent implementation, we must first understand how the input
point distribution is stored and managed. Regent’s data model
consists of storing data in regions. To a first approximation,
a region is just an array of structs. Unlike traditional arrays,
regions can be relocated (e.g., onto GPUs) or can even have
multiple copies at once (e.g., for replication of read-only data).
Regions, when used as arguments to tasks, are also analyzed by
the compiler and runtime to extract task and data parallelism.
The present solver stores the input point distribution in a 1
dimensional region with multiple attributes corresponding to a
point grouped together inside a C-like struct called DomainPt.
Since this solver uses meshfree methods on an unstructured
grid, each DomainPt also needs to store the global indices
of its neighbors.

Domain decomposition is done by partitioning the parent
region into subregions. A partition, defined on a region, is a
first-class data type in Regent that divides the parent region into
an array of subregions. If it is guaranteed that no two subregions
of a partition can share a common element then the partition is
said to be disjoint, otherwise it is aliased. Partitioning is a fairly
cheap operation in Regent because memory is only allocated
for the subregions of a partition when needed (lazy allocation).
Since the amount of data parallelism in an application directly
depends on how partitions have been defined, Regent provides
an expressive framework for partitioning [17] which has been
extremely useful in the current application.

Two different partitioning schemes were tried for the current
application. First, we uniformly divided the parent region into
the required number of subregions, without regards to the
distribution of points within each subregion. This approach can
be easily implemented in Regent. Later it was found that using

METIS [18] to create a minimal edge-cut partition and using
it inside Regent led to better memory usage and performance.
This is due to the fact that METIS is able to minimize the
total number of ghost points which reduces the amount of data
communication between nodes. In Listing 2, p_local is the
Regent partition that was created directly from METIS, which
means that it is known at compile time that p_local is a
disjoint partition over the entire input point distribution.

One difference between the three implementations is in how
ghost points were determined. In both approaches outlined
above, ghost points for a given partition were determined
completely inside Regent. One method for this is to first
connect each point to its neighbors by using a directed edge
data structure. Then, any such neighbor assigned to a different
subregion in p_local can easily be marked as a ghost
point. All ghost points are then collected inside a Regent
partition p_ghost (see line 1 in Listing 2) for easy access.
Put differently, p_ghost is an aliased Regent partition such
that the subregion p_ghost[i] will contain every ghost point
for all points in p_local[i]. Note that since partitioning
in Regent only consists of naming subsets of data, no data
is copied between the two partitions at this time; copies will
only be made as and when required during execution. On the
other hand, Fortran or Julia’s programming models are not
expressive enough to identify ghost points automatically so
all the necessary information (e.g., sizes of halos, and their
connectivity) must be computed by hand from the output of
METIS.

Recall that each DomainPt stores the global indices of
its neighbors. Due to the unstructured nature of the present
application domain, there is no way to tell beforehand if a
given neighbor is a ghost point or not, that is, if a given
neighbor is present in the same subregion or not. Fortran and
Julia handle this by keeping a flag and checking it to determine
whether a neighbor is a local point or not. This introduces
a branch inside performance critical code. A better solution
is possible in Regent. Since Regent allows us to perform the
union of two partitions, we are able to create a single partition
of neighbors p_nbhs that includes both local and ghost points.
This is done in line 1 in Listing 2 for all subregions at once.
Therefore, any neighbor of a point in p_local[i] can be
accessed simply by indexing the subregion p_nbhs[i] by
the neighbor’s global index, removing the need to check a
flag for each neighbor access in Regent. Note that any data
communication and synchronization required to access a point
belonging to a different subregion is completely hidden from
the user and handled automatically by the programming system.
We will look at this in more detail later.

Let us now consider the implementation of the subroutines
from Algorithm 1 and understand how parallelism is extracted
in Regent and Legion. First, recall from the introduction
that Regent has a task-based programming model. Each task
that receives a region as an input parameter must declare
its privileges on it at compile time. A privilege can be one
of reads, writes or reads writes. As an illustration,
Listing 1 shows the task for state_update(rk). It requests



read and write privileges on different members of DomainPt,
which is contained in the input region requirement. Privilege
declaration is crucial to Regent’s extraction of parallelism,
because it lets the compiler determine which tasks are non-
interfering (i.e., can be run in parallel). For instance, the
compiler recognizes that two sibling tasks requesting read
privileges on the same region cannot have a dependence
among them, and are therefore safe to run concurrently.
The ispace(int1d) expression verifies that the region
requirement is a 1 dimensional ordered collection, as mentioned
earlier. Note that the loop on lines 7–9 will be executed
sequentially, since only inter-task parallelism is extracted in
pure Regent.

1 task state_update(r : region(ispace(int1d),
DomainPt), rk : int)

2 where
3 reads(r.{nx, ny, prim, flux_res}),
4 writes(r.prim)
5 do
6 var sum_res_sqr = 0.0
7 for pt in r do
8 -- computations
9 end

10 return sum_res_sqr
11 end

Listing 1. Regent code for state update().

1 var p_nbhs = p_local | p_ghost
2 for i = 0, N do
3 __demand(__index_launch)
4 for color in p_local.colors do
5 time_step(p_local[color])
6 end
7 var res : double = 0.0
8 for rk = 1, 5 do
9 __demand(__index_launch)

10 for color in p_local.colors do
11 q_variables(p_local[color])
12 end
13 __demand(__index_launch)
14 for color in p_local.colors do
15 q_derivatives(p_local[color], p_nbhs[color])
16 end
17 __demand(__index_launch)
18 for color in p_local.colors do
19 flux_residual(p_local[color], p_nbhs[color])
20 end
21 __demand(__index_launch)
22 for color in p_local.colors do
23 res += state_update(p_local[color], rk)
24 end
25 end
26 residue(res)
27 end

Listing 2. Regent task for q-LSKUM.

Listing 2 presents Regent code for the four stage Runge-
Kutta scheme. Notice that instead of calling each task on the
entire point distribution at once, we iterate over our main
partition p_local and call each task on each subregion. This
is a common idiom in Regent that helps to expose parallelism
in an application to the Regent compiler and the Legion runtime
system. For instance, consider the loop on lines 10-12 in Listing
2. Notice that a call to q_variables() only receives a
subregion of p_local as input. Because it is known that

p_local is disjoint partition at compile time, the compiler
is able to prove that, in a given time-step, no two calls to
q_variables() will be interfering, and thus the loop is
safe to be parallelized.

We should emphasize here that the extraction of parallelism
does not stop with the Regent compiler. During execution,
Legion dynamically creates a dependence graph between tasks
and uses it to extract even more parallelism from the application.
This is beneficial as the compiler is often forced to make
conservative decisions due to the lack of information available
at compile time. However, the original sequential semantics
of the application are guaranteed to be maintained in every
execution, distributed or otherwise.
1 subroutine update_begin_prim_ghost()
2 implicit none
3 PetscErrorCode :: ierr
4 if (proc==1) return
5
6 call VecGhostUpdateBegin(p_prim,INSERT_VALUES,

SCATTER_FORWARD,ierr)
7 end subroutine
8
9 subroutine update_end_prim_ghost()

10 implicit none
11 PetscErrorCode :: ierr
12 if (proc==1) return
13
14 call PetscLogEventBegin(prim_comm, ierr)
15 call VecGhostUpdateEnd(p_prim,INSERT_VALUES,

SCATTER_FORWARD,ierr)
16 call PetscLogEventEnd(prim_comm, ierr)
17 end subroutine

Listing 3. Fortran subroutines to update primal values after state update().

1 function updateLocalGhostPrim(loc_ghost_holder,
loc_keys, dist_prim)

2 loc_ghost_holder = loc_ghost_holder[:L]
3 localkeys = loc_keys[:L]
4 for iter in localkeys
5 @. loc_ghost_holder[1][iter].prim =

dist_prim[loc_ghost_holder[1][iter].globalID].
prim

6 end
7 return nothing
8 end

Listing 4. Julia function to update primal values after state update().

Let us now turn to the other main consideration in de-
veloping a CFD solver — data communication and syn-
chronization. As an illustration, Listings 3 and 4 present a
part of the Fortran and Julia code that update primal values
every time after state_update(rk) finishes execution
(see Algorithm 1). Fortran uses PETSc [19] while Julia uses
DistributedArrays.jl to perform the scatter-gather
copies required. In the Fortran solver, all communication
calls are handled using PETSc Vector methods which use
MPI_Send and MPI_Receive to exchange data. To ensure
consistency of results, MPI_Barrier is used to synchronize
all MPI processes. In Julia, all subroutines and communication
calls are done via @spawn macros to all the processes. These
calls are encapsulated with the @sync macro which blocks till
all dynamically-enclosed @spawn calls are complete. Although
the subroutines are small, the programmer must ensure that



they are always executed at the right time and do not cause
any race conditions.

The most important thing to note here is that there is no user-
written counterpart of this code in the Regent implementation.
All data communication and synchronization in Regent is
completely hidden from the user and handled automatically
by the programming system. Legion, helped by static analysis
done by the Regent compiler, dynamically computes exactly
which data has to be moved where and inserts the required
copies while maintaining program correctness. As an example
of implicit data communication and synchronization in Regent,
consider the computation of residues. This involves a scalar
reduction, shown as part of the Regent code in line 23
in Listing 2. In Fortran and Julia, this is done through
an AllReduce call. Regent, however, recognizes common
patterns that correspond to collectives (such as reductions) and
automatically replaces them with the necessary runtime calls
to perform the collectives. We should note here that Legion
does not use MPI for communication. Rather, Realm [20], the
low-level runtime targeted by Legion, is responsible for actual
message passing with inter-node communication done using a
GASNet [21] networking layer.

One clear advantage of the programming system being
completely responsible for data movement is in terms of
code readability, writability and maintainability. Programmers
no longer need to think about setting up application level
synchronization points or spend time debugging race conditions,
as is often the case in explicitly parallel programming models
like Fortran and Julia.

There are several optimizations available in Regent and Le-
gion for improving scalability and performance of applications.
We will briefly discuss those that were instrumental in the
current implementation.

• Index launches [7] are an optimization that reduces the
runtime analysis cost of a loop of task launches by using
static analysis performed by the Regent compiler. All five
major task launches in q-LSKUM were performed using
index launches, as can be seen in Listing 2 by the multi-
ple occurrences of the __demand(__index_launch)
source code annotation. It should be noted that this
annotation does not actually change what the compiler will
optimize, but acts as a safeguard by forcing the compiler to
throw an error if it is unable to perform the optimization.

• The mapper [1] is a Legion interface to customize the
scheduler and manage all performance decisions made by
the runtime system, including assigning tasks to cores and
data requirements to physical memory. We customized
the default mapper to disable automatic load balancing
and noticed significantly increased performance on AMD
processors because otherwise a subregion might transfer
between cores and hurt performance, possibly due to
AMD’s non-uniform chip inter-connects.

• Dynamic control replication (DCR) [22] is an optimization
that improves scalability of Regent and Legion applica-
tions by launching a set of long-running worker threads
called shards on multiple nodes. We used DCR on the

top-level task and found it to be crucial for multi-node
performance.

• Finally, we used Regent’s support for OpenMP code
generation in which intra-task parallelism is extracted by
converting a for-list or for-num loop to an OpenMP style
loop. During testing, we observed that our application
was copy-bound for multi-node execution, so we switched
to using Regent + OpenMP which greatly improved
performance by increasing subregion size and therefore
reducing the number of ghost points which have to be
copied between nodes. Since the compiler is responsible
for all the required code transformations, very little
programmer effort was needed to make this switch. On
the other hand, in Fortran, a significant amount of time
needs to be invested in refactoring an application to use
OpenMP. Note that although Regent targets the OpenMP
API, it does not use OpenMP source code annotations.
All decisions about parallelism are made by the compiler
directly and automatically, and the user is only involved
in hinting where such optimizations might be beneficial.

In summary, although implicitly parallel programming sys-
tems have a lot of clear advantages over more traditional,
explicitly parallel approaches, they are not without their
limitations. Since Legion has to carry out dynamic dependence
analysis of all tasks, having a large number of fine grained
tasks will slow down execution by making the runtime analysis
the execution bottleneck. We were able to circumnavigate this
by inlining a lot of our fine grained tasks, at the cost of some
lost parallelism. Moreover, due to how memory instances are
currently managed in Realm, we see increased memory usage
in Regent compared to our Fortran or Julia implementations.

IV. RESULTS AND DISCUSSION

In this section, we present numerical results to demonstrate
the performance of the implicitly parallel meshfree q-LSKUM
solver based on Regent. Its performance is assessed by
comparing with explicitly parallel versions of the same code
written in Fortran 90 and Julia 1.5.1. Note that, in the present
work, Fortran parallel code uses MPI with PETSc libraries,
while Julia uses its built-in parallel library. We did not pursue
Julia with MPI as we are interested in assessing the performance
of the built-in Julia parallel library as an alternative to MPI +
X.

Note that the Fortran code is a production code that is
being extensively used to compute fluid flows around many
aerodynamic configurations. The Regent code is verified on
these standard test cases for 2D inviscid flows by comparing the
output quantities such as lift and drag coefficients, convergence
in residue fall and converged flow solution with the values
obtained from the Fortran code.

To assess the computational efficiency of the Regent based
meshfree solver, we consider the test case of inviscid fluid flow
around the NACA 0012 airfoil at Mach number, M = 0.85, and
angle of attack, AoA = 1o. For the bench-marks, five levels
of point distributions are used, ranging from 0.8 to 40 million
points. All computations are performed with double precision



TABLE I
CONFIGURATION OF THE COMPUTE NODES.

Node configuration AMD

Model AMD EPYCTM 7542

Cores 64 (32× 2)

Core Frequency 2.90 GHz
Global Memory 256 (32× 8) GB
Memory Speed 3200 MT/s
L2 Cache 32 (16× 2) MB
L3 Cache 128 (64× 2) MB

on compute nodes whose specifications are given in Table I.
These nodes are interconnected using a high speed Mellanox
EDR InfiniBand network with 100 Gbps fully bi-directional
bandwidth.

To measure the performance of the parallel codes, we define
a cost metric called the Rate of Data Processing (RDP). The
RDP can be defined as the total wall clock time in seconds per
iteration per point. It is therefore clear that lower the values
of RDP, better the performance of the code. Furthermore, as
we increase the size of the point distribution, the RDP should
decrease asymptotically. In the present work, the RDP values
for all versions of the code are generated by fixing the number
of iterations in the flow solver to 1000.

Table II shows a comparison of the RDP values on a single
compute node. Here, both Fortran and Julia parallel codes
are run by decomposing all five point distributions into 64
partitions. These 64 partitions are executed on 64 cores. On
the other hand, Regent uses 62 partitions, while Regent +
OpenMP uses 2 partitions. In the case of Regent, 62 partitions
are assigned to 62 cores and the remaining 2 cores are used by
Legion for runtime dependence analysis and utility processing.
As far as Regent + OpenMP is concerned, the 2 partitions are
due to the architecture of the AMD node used in the present
work. As per the present specification, this node consists of
two sockets. Each socket is populated with one physical CPU
consisting of 32 cores. The HPC platform is configured in
such a way that it consists of one NUMA domain per socket.
As NUMA optimizes the spatial availability of the memory,
Regent + OpenMP is able to take advantage of it and thus
yields better performance. Each partition uses 30 OpenMP
threads that are assigned to 30 cores. The remaining 4 cores
are used by Legion for operations as described earlier.

TABLE II
COMPARISON OF RDP VALUES ON A SINGLE NODE.

No. of points Regent Regent + OpenMP Fortran Julia

RDP × 10−7 (Lower is better)

804, 824 9.9266 6.8145 4.3367 48.2093

2, 642, 264 4.8180 6.4662 4.0788 31.8098

9, 992, 000 3.7195 6.2460 3.8406 22.2528

25, 330, 172 3.3717 6.6212 3.7374 17.5542

39, 381, 464 2.8772 5.9714 3.6717 15.0160

The tabulated values show that the RDP values decrease
continuously with increase in the size of the point distribution.
On the first two point distributions, the RDP values based
on Regent are observed to be higher than Fortran. This
behaviour of Regent can be attributed to Legion’s runtime
dependence analysis. Note that the complexity of this analysis
is independent of the size of the point distribution. On the
coarse distributions, the task granularities are smaller, and
thus the time spent by Legion to perform this analysis took
a significant portion of execution time and therefore resulted
in higher RDP values. On the finer distributions, this time
factor is found to be negligible compared to the time spent on
communications and tasks.

In typical MPI implementations such as Fortran, commu-
nications employ MPI_Barrier to synchronize the pro-
cesses. In the present Fortran parallel code, PETSc uses
MPI_Barrier before computing the flux_residual()
and after state_update(rk). This ensures that updated
values are communicated during MPI_Send and MPI_Recv
calls. Due to this, cores that reach the barrier earlier than others
need to wait, which results in CPU idling. On the other hand,
in the case of Regent, instead of cores, Legion’s dependence
analysis works at the level of tasks, their dependencies and
data requirements. During mapping, tasks are assigned to cores
and their data requirements are assigned to physical memory.
Legion will then try to execute these tasks as soon as the
assigned cores are free and data requirements are met. Since
there are no global synchronization barriers in the present
Regent implementation of the solver, all the tasks listed in
Listing 2 will only wait for their individual dependencies to be
resolved. This causes reduction in CPU idling time and thus
results in lower RDP values compared to Fortran on the finer
point distributions.

The RDP values based on Regent + OpenMP are observed
to be higher compared to pure Regent. Unlike pure Regent,
where only inter-task parallelism is extracted, OpenMP code
generation parallelizes for-list loops inside tasks. In order to
take advantage of this feature, the size of each subregion needs
to be increased. However, the number of tasks that are available
for analysis reduces as the number of partitions decreases.
This results in loss of inter-task parallelism and causes a net
performance drop in Regent + OpenMP.

Compared to other parallel codes, the performance of the
Julia code is observed to be poor as its RDP values are
significantly higher. In the present work, the Julia code employs
DistributedArrays.jl package as an interface to the
Julia parallel framework. During communications within the
compute node, instead of the desired data it synchronizes the
entire point data. This significantly increases the communica-
tion overhead leading to higher RDP values.

To analyse the relative performances of Regent, Regent +
OpenMP and Julia codes with respect to the Fortran code on
a single node, Figure 1 shows a comparison of the relative
RDP. Here, the relative RDP of Regent is defined as the ratio
of the RDP values based on the Fortran code to the RDP of
the Regent code. Similarly, we can define the relative RDPs of



Fig. 1. Comparison of relative RDP on a single node.
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Regent + OpenMP and Julia. From this plot we can observe
that Regent performs better than Fortran on medium size point
distributions and exhibits superior performance on the finest
point distribution. On the other hand, the relative RDP of
Regent + OpenMP is observed to be around 0.6 on all levels
of point distribution. For Julia, the relative RDP varied from
0.09 to 0.24.

To test the strong scalability of the parallel codes, Table III
shows a comparison of the RDP values for the finest distribution
up to 8 compute nodes, which amounts to 512 cores. For the
comparisons, we consider Regent + OpenMP as pure Regent
code shows poor scalability. This is due to the large number of
copies of sparse regions of the ghost points made by Legion.

The tabulated values show that the RDP values of the parallel
codes decrease continuously with the increase in the number
of nodes. It can be observed that the performance of Regent +
OpenMP is still slower than Fortran. Similar to its single node
performance, on multiple nodes, Legion’s dependence analysis
is unable to extract enough inter-task parallelism due to lesser
number of partitions per node. This resulted in higher RDP
values. On the other hand, Julia parallel code exhibits very

TABLE III
COMPARISON OF RDP VALUES ON MULTIPLE NODES.

Nodes Regent + OpenMP Fortran Julia

RDP values (Lower is better)

1 5.9714× 10−7 3.6717× 10−7 1.5016× 10−6

2 3.2912× 10−7 1.7886× 10−7 1.1356× 10−6

3 2.8706× 10−7 1.2845× 10−7 8.0546× 10−7

4 2.2686× 10−7 9.5952× 10−8 6.8814× 10−7

5 1.8809× 10−7 8.1205× 10−8 6.3482× 10−7

6 1.8947× 10−7 6.9134× 10−8 5.9520× 10−7

7 1.6165× 10−7 5.9616× 10−8 5.6575× 10−7

8 1.5186× 10−7 4.9933× 10−8 5.5204× 10−7

Fig. 2. Comparison of the slowdown factor in RDP values on the finest point
distribution.
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poor performance. This is due to the fact that on distributed
architecture, Julia’s parallel framework uses TCP/IP to connect
and transport messages between processes. Therefore, it could
not take advantage of high-performance interconnects such
as InfiniBand used in the present platform. Another possible
reason for its poor performance could be the usage of generic
Julia binaries as compilation from source was not possible on
the current AMD platform.

Figure 2 shows a comparison of the slowdown factor in RDP
values of Regent + OpenMP and Julia codes on the finest point
distribution. Here, the slowdown factor of Regent + OpenMP
is defined as the ratio of the RDP values based on Regent +
OpenMP to the RDP values of the Fortran code. Similarly,
we can define the slowdown factor for the Julia code. For the
Regent + OpenMP code, the slowdown factor varied from 1.63
on the single node to 3.04 on 8 nodes. On the other hand, the
slowdown factor of the Julia code increases continuously with
the number of nodes. This behaviour can be attributed to the
inter node communications overhead.

Figure 3 shows the strong scalability of the parallel codes on
the finest point distribution. From this figure, we can observe
that the Fortran code scales almost linearly up to 8 nodes. On
the other hand, Regent scales linearly up to two nodes, while
Julia scales poorly. This behaviour is expected and consistent
with the earlier discussion.

V. CONCLUSIONS

In this paper, we presented the development of an implicitly
parallel meshfree q-LSKUM solver based on Regent. The
computational efficiency of the Regent solver was assessed by
comparing with corresponding explicitly parallel versions of the
solver written in Fortran and Julia. To measure the performance
of the parallel codes, the RDP values were computed from
coarse to very fine distributions.



Fig. 3. Strong scalability on the finest point distribution.
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Numerical results for a single node have shown that the
performance of the Regent solver was slower compared
to the Fortran solver on the coarse distributions. On fine
distributions, the RDP values of Regent had surpassed Fortran.
Although Regent + OpenMP code performed better than Julia,
it was slower than Regent and Fortran on all levels of point
distribution. In the case of multi nodes, we were unable to run
the Regent solver due to the associated memory issues. The
performance of the Regent + OpenMP solver was found to be
slower than Fortran but faster than Julia.

As far as the Julia parallel solver’s poor performance is
concerned, its associated parallel libraries still have memory
allocation issues with data communication. Future versions
should be able to resolve these issues.

Presently, we are working on enhancing the performance
of the Regent solver for distributed execution by optimizing
the subregions in order to maximize locality and minimize
communications. We are also exploring the feasibility of using
the newly added compact sparse instances in Legion and Realm
to improve the copy performance and reduce the memory
footprint. Having shown very promising results for fine point
distributions on a single node, it is worth pursuing Regent for
distributed nodes.

Research is also under progress to make the meshfree solver
truly hybrid so that it can fully exploit the heterogeneous
platforms comprising both CPUs and GPUs. In the future, we
would like to extend the present solvers to three-dimensional
flows.
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[20] S. Treichler, M. Bauer, and A. Aiken, “Realm: An event-based low-level
runtime for distributed memory architectures,” in Parallel Architectures
and Compilation Techniques (PACT), 2014.

[21] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta, J. Duell, S. L.
Graham, P. Hargrove, P. Hilfinger, P. Husbands, C. Iancu, A. Kamil,
R. Nishtala, J. Su, M. Welcome, and T. Wen, “Productivity and
performance using partitioned global address space languages,” in PASCO,
2007, pp. 24–32.

[22] E. Slaughter, W. Lee, S. Treichler, W. Zhang, M. Bauer, G. Shipman,
P. McCormick, and A. Aiken, “Control Replication: Compiling implicit
parallelism to efficient SPMD with logical regions,” in Supercomputing
(SC), 2017.



APPENDIX
ARTIFACT DESCRIPTION

Summary of the Experiments Reported

We performed strong scaling experiments up to 8 nodes. For
reproducibility, the exact version of Regent, Fortran and Julia
used in the experiments has been saved in a branch, along with
all scripts used to build and run.

Artifact Availability

Software Artifact Availability: All author created software
artifacts are available in public repositories.

Hardware Artifact Availability: There are no author-
created hardware artifacts.

Data Artifact Availability: Some author-created data
artifacts are NOT maintained in a public repository or are
NOT available under an OSI-approved license.

Proprietary Artifacts: There are associated proprietary
artifacts that are not created by the authors. Some author-
created artifacts are proprietary.

List of URLs and or DOIs where artifacts are available:
Project repositories:

1) For grid generation and sample grids - https://github.com/
TestSubjector/QuadTreeMeshSolver

2) For grid partitioning related features - https://github.com/
Nischay-Pro/mfpre

3) For Regent specific code - https://github.com/
rupanshusoi/meshfree solver regent

4) For Fortran specific code - https://github.com/
Nischay-Pro/mfcfd

5) For Julia specific code - https://github.com/Nischay-Pro/
meshfree-solver

Baseline Experimental Setup, and Modifications Made for the
Paper

Relevant Hardware Details: AMD EPYC 7542, Infini-
Band EDR Interconnect

Operating Systems and Versions: CentOS 8.2 running
Linux kernel 4.18.0-193.6.3

Compilers and Versions: GCC 9.3.0, LLVM 6.0.1 (Regent
only), Python 3.8.4 (Legion only), Julia 1.4.2

Libraries and Versions: PETSc 3.13.1, ClusterManagers.jl
0.4.0, DistributedArrays.jl 0.6.5, OpenMPI 3.1.6

Key Algorithms: N/A
Input Datasets and Versions: N/A
Paper Modifications: N/A
Output from scripts that gathers execution environment

information:
LS_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so

=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or
=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca
=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.
tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj
=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.
lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz
=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z
=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz
=01;31:*.lzo=01;31:*.xz=01;31:*.zst=01;31:*.
tzst=01;31:*.bz2=01;31:*.bz=01;31:*.tbz

=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.
rpm=01;31:*.jar=01;31:*.war=01;31:*.ear
=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.
ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z
=01;31:*.rz=01;31:*.cab=01;31:*.wim=01;31:*.
swm=01;31:*.dwm=01;31:*.esd=01;31:*.jpg
=01;35:*.jpeg=01;35:*.mjpg=01;35:*.mjpeg
=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.
pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm
=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.
png=01;35:*.svg=01;35:*.svgz=01;35:*.mng
=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.
mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm
=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.
mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv
=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.
rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli
=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf
=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.
emf=01;35:*.ogv=01;35:*.ogx=01;35:*.aac
=01;36:*.au=01;36:*.flac=01;36:*.m4a=01;36:*.
mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3
=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.
wav=01;36:*.oga=01;36:*.opus=01;36:*.spx
=01;36:*.xspf=01;36:

LANG=en_IN.UTF-8
SUDO_GID=1000
HOSTNAME=node1
SUDO_COMMAND=./collect_environment.sh
USER=USER
PWD=/storage/home/nischay/Author-Kit
HOME=/USER
SUDO_USER=nischay
SUDO_UID=1000
MAIL=/var/spool/mail/nischay
SHELL=/bin/bash
TERM=rxvt-unicode
SHLVL=1
LOGNAME=USER
PATH=/sbin:/bin:/usr/sbin:/usr/bin
HISTSIZE=1000
_=/bin/env
Linux node1 4.18.0-193.6.3.el8_2.x86_64 #1 SMP Wed

Jun 10 11:09:32 UTC 2020 x86_64 x86_64 x86_64
GNU/Linux

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 64
On-line CPU(s) list: 0-63
Thread(s) per core: 1
Core(s) per socket: 32
Socket(s): 2
NUMA node(s): 2
Vendor ID: AuthenticAMD
CPU family: 23
Model: 49
Model name: AMD EPYC 7542 32-Core

Processor
Stepping: 0
CPU MHz: 2973.915
CPU max MHz: 2900.0000
CPU min MHz: 1500.0000
BogoMIPS: 5799.92
Virtualization: AMD-V
L1d cache: 32K
L1i cache: 32K
L2 cache: 512K
L3 cache: 16384K
NUMA node0 CPU(s): 0-31
NUMA node1 CPU(s): 32-63
Flags: fpu vme de pse tsc msr pae

mce cx8 apic sep mtrr pge mca cmov pat pse36
clflush mmx fxsr sse sse2 ht syscall nx mmxext



fxsr_opt pdpe1gb rdtscp lm constant_tsc
rep_good nopl nonstop_tsc cpuid extd_apicid
aperfmperf pni pclmulqdq monitor ssse3 fma
cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx
f16c rdrand lahf_lm cmp_legacy svm extapic
cr8_legacy abm sse4a misalignsse 3dnowprefetch
osvw ibs skinit wdt tce topoext perfctr_core
perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3
cdp_l3 hw_pstate sme ssbd mba sev ibrs ibpb
stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm
rdt_a rdseed adx smap clflushopt clwb sha_ni
xsaveopt xsavec xgetbv1 xsaves cqm_llc
cqm_occup_llc cqm_mbm_total cqm_mbm_local
clzero irperf xsaveerptr wbnoinvd arat npt
lbrv svm_lock nrip_save tsc_scale vmcb_clean
flushbyasid decodeassists pausefilter
pfthreshold avic v_vmsave_vmload vgif umip
rdpid overflow_recov succor smca

MemTotal: 263682004 kB
MemFree: 260224776 kB
MemAvailable: 259382108 kB
Buffers: 240 kB
Cached: 323480 kB
SwapCached: 6336 kB
Active: 214864 kB
Inactive: 133692 kB
Active(anon): 29900 kB
Inactive(anon): 19444 kB
Active(file): 184964 kB
Inactive(file): 114248 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 7815164 kB
SwapFree: 7530108 kB
Dirty: 0 kB
Writeback: 0 kB
AnonPages: 20800 kB
Mapped: 43768 kB
Shmem: 24480 kB
KReclaimable: 289916 kB
Slab: 1235372 kB
SReclaimable: 289916 kB
SUnreclaim: 945456 kB
KernelStack: 21184 kB
PageTables: 9024 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 139656164 kB
Committed_AS: 1679312 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 0 kB
VmallocChunk: 0 kB
Percpu: 239616 kB
HardwareCorrupted: 0 kB
AnonHugePages: 0 kB
ShmemHugePages: 0 kB
ShmemPmdMapped: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
Hugetlb: 0 kB
DirectMap4k: 1703600 kB
DirectMap2M: 132370432 kB
DirectMap1G: 135266304 kB
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 1 447.1G 0 disk

sda1 8:1 1 3.7G 0 part /boot
sda2 8:2 1 193.7G 0 part
cl -root 253:0 0 186.3G 0 lvm /
cl -swap 253:1 0 7.5G 0 lvm [SWAP]

[1:0:0:0] disk ATA SAMSUNG MZ7KM480 304
Q /dev/sda 480GB

H/W path Device Class
Description

=============================================================

system
DA700TR-14R4 (To be filled by O.E.M.)

/0 bus
H11DSU-iN

/0/0 memory
64KiB BIOS

/0/1e memory
256GiB System Memory

/0/1e/0 memory
[empty]

/0/1e/1 memory
[empty]

/0/1e/2 memory
[empty]

/0/1e/3 memory
[empty]

/0/1e/4 memory
[empty]

/0/1e/5 memory
32GiB DIMM DDR4 Synchronous Registered (
Buffered) 3200 MHz (0.3 ns)

/0/1e/6 memory
[empty]

/0/1e/7 memory
32GiB DIMM DDR4 Synchronous Registered (
Buffered) 3200 MHz (0.3 ns)

/0/1e/8 memory
[empty]

/0/1e/9 memory
32GiB DIMM DDR4 Synchronous Registered (
Buffered) 3200 MHz (0.3 ns)

/0/1e/a memory
[empty]

/0/1e/b memory
32GiB DIMM DDR4 Synchronous Registered (
Buffered) 3200 MHz (0.3 ns)

/0/1e/c memory
[empty]

/0/1e/d memory
[empty]

/0/1e/e memory
[empty]

/0/1e/f memory
[empty]

/0/1e/10 memory
[empty]

/0/1e/11 memory
32GiB DIMM DDR4 Synchronous Registered (
Buffered) 3200 MHz (0.3 ns)

/0/1e/12 memory
[empty]

/0/1e/13 memory
32GiB DIMM DDR4 Synchronous Registered (
Buffered) 3200 MHz (0.3 ns)

/0/1e/14 memory
[empty]

/0/1e/15 memory
[empty]

/0/1e/16 memory
[empty]

/0/1e/17 memory
[empty]

/0/1e/18 memory
[empty]

/0/1e/19 memory
32GiB DIMM DDR4 Synchronous Registered (
Buffered) 3200 MHz (0.3 ns)



/0/1e/1a memory
[empty]

/0/1e/1b memory
32GiB DIMM DDR4 Synchronous Registered (
Buffered) 3200 MHz (0.3 ns)

/0/1e/1c memory
[empty]

/0/1e/1d memory
[empty]

/0/1e/1e memory
[empty]

/0/1e/1f memory
[empty]

/0/21 memory
2MiB L1 cache

/0/22 memory
16MiB L2 cache

/0/23 memory
128MiB L3 cache

/0/24 processor
AMD EPYC 7542 32-Core Processor

/0/49 memory
2MiB L1 cache

/0/4a memory
16MiB L2 cache

/0/4b memory
128MiB L3 cache

/0/4c processor
AMD EPYC 7542 32-Core Processor

/0/100 bridge
Starship/Matisse Root Complex

/0/100/0.2 generic
Starship/Matisse IOMMU

/0/100/7.1 bridge
Starship/Matisse Internal PCIe GPP Bridge 0 to
bus[E:B]

/0/100/7.1/0 generic
Starship/Matisse PCIe Dummy Function

/0/100/7.1/0.2 generic
Starship/Matisse PTDMA

/0/100/8.1 bridge
Starship/Matisse Internal PCIe GPP Bridge 0 to
bus[E:B]

/0/100/8.1/0 generic
Starship/Matisse Reserved SPP

/0/100/8.1/0.2 generic
Starship/Matisse PTDMA

/0/100/8.1/0.3 bus
Starship USB 3.0 Host Controller

/0/100/8.1/0.3/0 usb5 bus
xHCI Host Controller

/0/100/8.1/0.3/0/2 bus
Hub

/0/100/8.1/0.3/0/2/1 input
Keyboard

/0/100/8.1/0.3/1 usb6 bus
xHCI Host Controller

/0/100/14 bus
FCH SMBus Controller

/0/100/14.3 bridge
FCH LPC Bridge

/0/101 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/102 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/103 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/104 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/105 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/106 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/107 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/108 bridge
Starship Device 24; Function 0

/0/109 bridge
Starship Device 24; Function 1

/0/10a bridge
Starship Device 24; Function 2

/0/10b bridge
Starship Device 24; Function 3

/0/10c bridge
Starship Device 24; Function 4

/0/10d bridge
Starship Device 24; Function 5

/0/10e bridge
Starship Device 24; Function 6

/0/10f bridge
Starship Device 24; Function 7

/0/110 bridge
Starship Device 24; Function 0

/0/111 bridge
Starship Device 24; Function 1

/0/112 bridge
Starship Device 24; Function 2

/0/113 bridge
Starship Device 24; Function 3

/0/114 bridge
Starship Device 24; Function 4

/0/115 bridge
Starship Device 24; Function 5

/0/116 bridge
Starship Device 24; Function 6

/0/117 bridge
Starship Device 24; Function 7

/0/118 bridge
Starship/Matisse Root Complex

/0/118/0.2 generic
Starship/Matisse IOMMU

/0/118/7.1 bridge
Starship/Matisse Internal PCIe GPP Bridge 0 to
bus[E:B]

/0/118/7.1/0 generic
Starship/Matisse PCIe Dummy Function

/0/118/7.1/0.2 generic
Starship/Matisse PTDMA

/0/118/8.1 bridge
Starship/Matisse Internal PCIe GPP Bridge 0 to
bus[E:B]

/0/118/8.1/0 generic
Starship/Matisse Reserved SPP

/0/118/8.1/0.1 generic
Starship/Matisse Cryptographic Coprocessor
PSPCPP

/0/118/8.1/0.2 generic
Starship/Matisse PTDMA

/0/118/8.1/0.3 bus
Starship USB 3.0 Host Controller

/0/118/8.1/0.3/0 usb7 bus
xHCI Host Controller

/0/118/8.1/0.3/1 usb8 bus
xHCI Host Controller

/0/118/8.2 bridge
Starship/Matisse Internal PCIe GPP Bridge 0 to
bus[E:B]

/0/118/8.2/0 storage
FCH SATA Controller [AHCI mode]

/0/118/8.3 bridge
Starship/Matisse Internal PCIe GPP Bridge 0 to
bus[E:B]

/0/118/8.3/0 storage
FCH SATA Controller [AHCI mode]

/0/119 bridge
Starship/Matisse PCIe Dummy Host Bridge



/0/11a bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/11b bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/11c bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/11d bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/11e bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/11f bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/120 bridge
Starship/Matisse Root Complex

/0/120/0.2 generic
Starship/Matisse IOMMU

/0/120/1.1 bridge
Starship/Matisse GPP Bridge

/0/120/1.1/0 enp65s0f0 network
I350 Gigabit Network Connection

/0/120/1.1/0.1 enp65s0f1 network
I350 Gigabit Network Connection

/0/120/1.1/0.2 enp65s0f2 network
I350 Gigabit Network Connection

/0/120/1.1/0.3 enp65s0f3 network
I350 Gigabit Network Connection

/0/120/7.1 bridge
Starship/Matisse Internal PCIe GPP Bridge 0 to
bus[E:B]

/0/120/7.1/0 generic
Starship/Matisse PCIe Dummy Function

/0/120/7.1/0.2 generic
Starship/Matisse PTDMA

/0/120/8.1 bridge
Starship/Matisse Internal PCIe GPP Bridge 0 to
bus[E:B]

/0/120/8.1/0 generic
Starship/Matisse Reserved SPP

/0/120/8.1/0.2 generic
Starship/Matisse PTDMA

/0/120/8.2 bridge
Starship/Matisse Internal PCIe GPP Bridge 0 to
bus[E:B]

/0/120/8.2/0 storage
FCH SATA Controller [AHCI mode]

/0/120/8.3 bridge
Starship/Matisse Internal PCIe GPP Bridge 0 to
bus[E:B]

/0/120/8.3/0 scsi1 storage
FCH SATA Controller [AHCI mode]

/0/120/8.3/0/0.0.0 /dev/sda disk
480GB SAMSUNG MZ7KM480

/0/120/8.3/0/0.0.0/0 /dev/sda disk
480GB

/0/120/8.3/0/0.0.0/0/1 /dev/sda1 volume
3814MiB EXT4 volume

/0/120/8.3/0/0.0.0/0/2 /dev/sda2 volume
193GiB Linux LVM Physical Volume partition

/0/121 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/122 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/123 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/124 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/125 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/126 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/127 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/128 bridge
Starship/Matisse Root Complex

/0/128/0.2 generic
Starship/Matisse IOMMU

/0/128/3.1 bridge
Starship/Matisse GPP Bridge

/0/128/3.2 bridge
Starship/Matisse GPP Bridge

/0/128/3.3 bridge
Starship/Matisse GPP Bridge

/0/128/3.3/0 bus
ASM1042A USB 3.0 Host Controller

/0/128/3.3/0/0 usb1 bus
xHCI Host Controller

/0/128/3.3/0/1 usb2 bus
xHCI Host Controller

/0/128/3.4 bridge
Starship/Matisse GPP Bridge

/0/128/3.4/0 bus
ASM1042A USB 3.0 Host Controller

/0/128/3.4/0/0 usb3 bus
xHCI Host Controller

/0/128/3.4/0/1 usb4 bus
xHCI Host Controller

/0/128/4.1 bridge
Starship/Matisse GPP Bridge

/0/128/4.1/0 bridge
AST1150 PCI-to-PCI Bridge

/0/128/4.1/0/0 display
ASPEED Graphics Family

/0/128/7.1 bridge
Starship/Matisse Internal PCIe GPP Bridge 0 to
bus[E:B]

/0/128/7.1/0 generic
Starship/Matisse PCIe Dummy Function

/0/128/7.1/0.2 generic
Starship/Matisse PTDMA

/0/128/8.1 bridge
Starship/Matisse Internal PCIe GPP Bridge 0 to
bus[E:B]

/0/128/8.1/0 generic
Starship/Matisse Reserved SPP

/0/128/8.1/0.2 generic
Starship/Matisse PTDMA

/0/129 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/12a bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/12b bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/12c bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/12d bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/12e bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/12f bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/130 bridge
Starship/Matisse Root Complex

/0/130/0.2 generic
Starship/Matisse IOMMU

/0/130/1.1 bridge
Starship/Matisse GPP Bridge

/0/130/1.1/0 ib0 network
MT27800 Family [ConnectX-5]

/0/130/7.1 bridge
Starship/Matisse Internal PCIe GPP Bridge 0 to
bus[E:B]

/0/130/7.1/0 generic
Starship/Matisse PCIe Dummy Function

/0/130/7.1/0.2 generic
Starship/Matisse PTDMA

/0/130/8.1 bridge
Starship/Matisse Internal PCIe GPP Bridge 0 to
bus[E:B]



/0/130/8.1/0 generic
Starship/Matisse Reserved SPP

/0/130/8.1/0.2 generic
Starship/Matisse PTDMA

/0/130/8.1/0.3 bus
Starship USB 3.0 Host Controller

/0/130/8.1/0.3/0 usb9 bus
xHCI Host Controller

/0/130/8.1/0.3/1 usb10 bus
xHCI Host Controller

/0/131 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/132 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/133 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/134 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/135 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/136 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/137 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/138 bridge
Starship/Matisse Root Complex

/0/138/0.2 generic
Starship/Matisse IOMMU

/0/138/7.1 bridge
Starship/Matisse Internal PCIe GPP Bridge 0 to
bus[E:B]

/0/138/7.1/0 generic
Starship/Matisse PCIe Dummy Function

/0/138/7.1/0.2 generic
Starship/Matisse PTDMA

/0/138/8.1 bridge
Starship/Matisse Internal PCIe GPP Bridge 0 to
bus[E:B]

/0/138/8.1/0 generic
Starship/Matisse Reserved SPP

/0/138/8.1/0.1 generic
Starship/Matisse Cryptographic Coprocessor
PSPCPP

/0/138/8.1/0.2 generic
Starship/Matisse PTDMA

/0/138/8.1/0.3 bus
Starship USB 3.0 Host Controller

/0/138/8.1/0.3/0 usb11 bus
xHCI Host Controller

/0/138/8.1/0.3/1 usb12 bus
xHCI Host Controller

/0/138/8.2 bridge
Starship/Matisse Internal PCIe GPP Bridge 0 to
bus[E:B]

/0/138/8.2/0 storage
FCH SATA Controller [AHCI mode]

/0/138/8.3 bridge
Starship/Matisse Internal PCIe GPP Bridge 0 to
bus[E:B]

/0/138/8.3/0 storage
FCH SATA Controller [AHCI mode]

/0/139 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/13a bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/13b bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/13c bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/13d bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/13e bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/13f bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/140 bridge
Starship/Matisse Root Complex

/0/140/0.2 generic
Starship/Matisse IOMMU

/0/140/7.1 bridge
Starship/Matisse Internal PCIe GPP Bridge 0 to
bus[E:B]

/0/140/7.1/0 generic
Starship/Matisse PCIe Dummy Function

/0/140/7.1/0.2 generic
Starship/Matisse PTDMA

/0/140/8.1 bridge
Starship/Matisse Internal PCIe GPP Bridge 0 to
bus[E:B]

/0/140/8.1/0 generic
Starship/Matisse Reserved SPP

/0/140/8.1/0.2 generic
Starship/Matisse PTDMA

/0/140/8.2 bridge
Starship/Matisse Internal PCIe GPP Bridge 0 to
bus[E:B]

/0/140/8.2/0 storage
FCH SATA Controller [AHCI mode]

/0/140/8.3 bridge
Starship/Matisse Internal PCIe GPP Bridge 0 to
bus[E:B]

/0/140/8.3/0 storage
FCH SATA Controller [AHCI mode]

/0/141 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/142 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/143 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/144 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/145 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/146 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/147 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/148 bridge
Starship/Matisse Root Complex

/0/148/0.2 generic
Starship/Matisse IOMMU

/0/148/3.1 bridge
Starship/Matisse GPP Bridge

/0/148/3.2 bridge
Starship/Matisse GPP Bridge

/0/148/7.1 bridge
Starship/Matisse Internal PCIe GPP Bridge 0 to
bus[E:B]

/0/148/7.1/0 generic
Starship/Matisse PCIe Dummy Function

/0/148/7.1/0.2 generic
Starship/Matisse PTDMA

/0/148/8.1 bridge
Starship/Matisse Internal PCIe GPP Bridge 0 to
bus[E:B]

/0/148/8.1/0 generic
Starship/Matisse Reserved SPP

/0/148/8.1/0.2 generic
Starship/Matisse PTDMA

/0/149 bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/14a bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/14b bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/14c bridge
Starship/Matisse PCIe Dummy Host Bridge



/0/14d bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/14e bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/14f bridge
Starship/Matisse PCIe Dummy Host Bridge

/0/1 system
PnP device PNP0c01

/0/2 system
PnP device PNP0b00

/0/3 system
PnP device PNP0c02

/0/4 communication
PnP device PNP0501

/0/5 communication
PnP device PNP0501

/0/6 system
PnP device PNP0c02

/1 power
PWS-1K02A-1R

/2 power
PWS-1K02A-1R


