
The 5th Annual Parallel Applications Workshop,
Alternatives To MPI+X (PAWATM) November 14 2022

Task Fusion in Distributed Runtimes
Shiv Sundram

Department of Computer Science
Stanford University

Stanford, CA
shiv1@stanford.edu

Wonchan Lee
NVIDIA

Santa Clara, USA
wonchanl@nvidia.com

Alex Aiken
Department of Computer Science

Stanford University
Stanford, CA

aaiken@cs.stanford.edu

Abstract—We present distributed task fusion, a run-
time optimization for task-based runtimes operating on
parallel and heterogeneous systems. Distributed task
fusion dynamically performs an efficient buffering, anal-
ysis, and fusion of asynchronously-evaluated distributed
operations, reducing the overheads inherent to schedul-
ing distributed tasks in implicitly parallel frameworks
and runtimes. We identify the constraints under which
distributed task fusion is permissible and describe an
implementation in Legate, a domain-agnostic library for
constructing portable and scalable task-based libraries.
We present performance results using cuNumeric, a
Legate library that enables scalable execution of NumPy
pipelines on parallel and heterogeneous systems. We
realize speedups up to 1.5x with task fusion enabled
on up to 32 P100 GPUs, thus demonstrating efficient
execution of pipelines involving many successive fine-
grained tasks. Finally, we discuss potential future work,
including complementary optimizations that could re-
sult in additional performance improvements.

Index Terms—Legion, Legate, cuNumeric, MPI+X,
Task-based runtimes, NumPy

I. INTRODUCTION

Task-based programming models are an increas-
ingly prominent and useful way to program parallel
and heterogeneous machines for domains including
scientific computing [8], [9], [16], machine learning
[3], [23], and data-analytics [31]. These models allow
users to express self-contained tasks and their depen-
dencies, which can be executed on a distributed, het-
erogeneous machine by a tasking runtime. In MPI+X
programming models, users must manually partition
data across processors, map computations to pro-
cessors, and manage inter-processor communication.
Task-based programming models help automate some
or all of these steps, making task-based programming
more productive.

Task-based systems have associated overheads with
launching tasks—tasks must be analyzed, resources
allocated, and scheduled. If the execution time of
tasks is comparable to or smaller than these task
overheads, then performance will be poor as the over-
heads are not sufficiently amortized by application
work [27]. The classic solution to having tasks that
are too short is to fuse tasks: to combine two or more
otherwise unrelated tasks into a single task to improve
overall task granularity [1], [12].

We consider a new twist on task fusion, distributed
task fusion, that arises in task-based models that
support higher-level launches of task groups [28],
collections of tasks that are launched in a single op-
eration across a machine. Fusing task groups is more
efficient than fusing individual tasks, but because task
groups are fundamentally distributed collections of
tasks there are new constraints on when fusion is
legal.

We illustrate and evaluate distributed task fusion
within cuNumeric [5], [6], a drop-in replacement
for NumPy [14] that enables execution on parallel
and heterogeneous architectures. The cuNumeric li-
brary automatically partitions NumPy operations into
task groups, which are then submitted to a task-
based runtime. Because cuNumeric performs this task
partitioning online and fully automatically, it can
create very small tasks that benefit significantly from
distributed task fusion.

We implement distributed task fusion within
Legate [6], cuNumeric’s backend task-based parallel
programming model. Legate itself is built on Le-
gion, which is the underlying tasking runtime [8].
We demonstrate distributed task fusion’s performance
improvement on several NumPy/cuNumeric bench-
marks, achieving 1.1x-1.5x speedups entirely through
the fully automatic amortization or complete elimina-
tion of certain task overheads.

II. EXECUTION MODEL

We assume an execution model where a machine
is a collection of processors {p0, . . . , pn−1}, each of
which has a task queue.

In our initial examples we assume a simple setting
where a program is a single top-level task that exe-
cutes a sequence of index launches. An index launch
is a group of homogeneous subtasks and an associated
projection function f . Each subtask ti in an index
launch has a unique index i and is entered in the task
queue for processor pi. Separately, we assume that
each array A used by a program is partitioned into
pieces {A0, . . . , An−1} with Ai placed in memory
belonging to processor pi. When the task ti runs
on pi, the projection function is used to determine
which subsets of ti’s array arguments ti will access.
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For example, if f(A, i) = Ai then task ti uses the
partition of A local to pi, but if f(A, i)∩(A−Ai) ̸= ∅
then communication is required to copy the data in
f(A, i)−Ai to pi before task ti can execute.

In the general case, an index launch takes an
additional parameter, a launch space I , where I is
a set of possibly multidimensional indices, and the
index launch executes one instance of the task t
for each index in I . In our simplified model, the
launch space is implicitly {0, . . . , n − 1}. We will
present examples with interesting launch spaces in
Section III-C. In real programs, the assignment of
tasks to processors also need not be 1-1, and arrays
do not need to be partitioned evenly across the entire
set of processors. However, none of these features
are relevant to distributed task fusion, so we will
focus on the simple execution model for clarity while
developing our fusion algorithm.

A cuNumeric program consists of a sequence of
calls to NumPy library operations, each of which
is a bulk operator over some NumPy arrays. The
cuNumeric library partitions the arrays across the
processors and converts each of the library calls into
an index launch. It also automatically generates a
projection function for each index launch that ensures
each subtask accesses the correct portion of the
partitioned data. We use the following simple NumPy
program (adapted from a line in Listing 1, a Black-
Scholes implementation) for illustration:

1 T3 = np.expr(-R*T)

In this simple example, there are two input arrays
R and T which we will assume have size 16. We
will use this as a running example to illustrate the
effects of fusion. There are three array operations: a
negation, a multiplication, and an exponentiation.

Figure 1 shows the execution of this program on
a single processor. Input arrays R and T are placed
on the processor p0, the three index launches have
only a single subtask each (so the launch space is
{0}), and the projection function simply returns all
the data f(X, 0) = X . The figure shows the state of
execution when all three tasks have been enqueued
on p0 and before any of them execute. The only
other task (shown at the left) is the top-level task
that launches the three index tasks [7]. The output
arrays T1, T2 and T3 are also stored entirely on p0.

Now consider the same program executed in par-
allel on four processors, shown in Figure 2. The
arrays R and T are evenly partitioned across the
processors with 4 elements each, and each index
launch now launches four subtasks (the launch space
is {0, 1, 2, 3}). Since each indexed task will access
the local portion of the arrays, the projection function
is f(X, i) = X[i ∗ 4 : (i + 1) ∗ 4]. Each queue will
receive the the same sequence of three subtasks (as
in Figure 1) operating on the local partition of each

Figure 1: Execution of program np.expr(-R*T)
on one processor. Each task results from an index
launch (orange) from a top level control task (green).
Temporaries T1, T2, and T3 will also reside com-
pletely on the sole processor.

Figure 2: Execution of the program
np.expr(-R*T) on four processors. The arrays,
including the temporaries, are partitioned equally
across the processors.

array. As before, cuNumeric will choose to partition
the output arrays T1, T2, and T3 across processors
identically to R and T (and so the same projection
function f is used for these arrays as well).

As mentioned above, communication occurs
when a task requires data other than the
local partition of an array on a processor.
Consider the following 1D, three point stencil:

2



1 input = np.array(N=18)
2 central = input[1 : -1]
3 west = input[0 : -2]
4 east = input[2 : N]
5 for i in range(num_iters):
6 output = east + west
7 central[:] = output

In Python a slice A[x:y] of an array names the
elements A[x] through A[y-1]. Negative indices
refer to positions before the end (the maximum
index) of the array, so input[1:-1] names
everything from the second element input[1]
(Python arrays are 0-based) to the next-to-last
element input[16]. Note that slices are views
(NumPy terminology), meaning they are aliases
of the underlying physical array. Thus the arrays
central, west and east are aliases for different
subpieces of the array input in this example.

Assume input is partitioned such that processor
0 contains input[0:4] as shown in Figure 3.
Now consider the data requirements for the subtask
of the addition output = east + west on pro-
cessor 0. This task will require west[0:4] and
east[0:4] (i.e., the projection function f(west,0)
= west[0:4] and f(east,0) = east[0:4] for the ad-
dition task) which are aliases for the subarrays
input[0:4] and input[2:6], respectively. This
task will thus require input[0:6], a range that
is missing input[4:6] on processor 0. During
the index launch the runtime will detect that this
data is needed on processor 0 and prompt input[4:6]
to be communicated from processor 1 before the
task output = east + west proceeds. Analo-
gous communication will happen at other processors,
shown in Figure 3.

If this example’s execution is distributed, any
purely local task fusion (i.e., that does not consider
the distributed nature of the execution) may perform
incorrect fusions that result in race conditions where
none existed before. To illustrate, each iteration of the
stencil’s inner loop results in two tasks: an addition
task (line 6) that reads from the underlying buffer,
and a subsequent copy task (line 7) that writes to
it. Recall that communication can occur as a result
of the addition task (shown in Figure 3). If we
run two iterations of this loop and fuse all four
tasks, we could, in the third task, potentially be
reading from the underlying buffer before the updates
from other processors have been fully communicated
and written to the buffer. Additional constraints are
needed prevent this unsafe fusion in the distributed
case, which we present in Section III-B.

As in all task-based models, tasks do not com-
municate with each other except through inputs and
outputs—no communication with other tasks takes
place internally during the execution of a task.

Figure 3: Executing a 1D two point stencil on four
processors. Inter-processor communication (solid ar-
rows) is needed because each task requires more data
than is stored in a processor’s local partition of the
input array. The control tasks and central[:]
= output (which is a trivial unary/copy task) are
not shown.

III. TASK FUSION

Recall our first example:

1 T3 = np.expr(-R*T)

The cuNumeric library, through Legate, issues a
separate index task launch for each of the three
respective function calls (the negation, multiplication,
and exponentiation). While this design enables a
great deal of parallelism, it has negative performance
implications if the subtasks are small. Each subtask
is associated with additional meta-tasks that manage
scheduling, synchronization, and data movement. An
abundance of index task launches of small tasks will
spawn many such meta-tasks that can bottleneck the
application’s performance when the tasks’ execution
times do not sufficiently amortize these overheads.

The goal of distributed task fusion, therefore, is to
mitigate these overheads by combining n index tasks
into a single aggregate index task, thus reducing the
number of required meta-tasks (and their associated
overhead) by a factor of n. In this case, the negation,
addition and exponentiation subtasks all have input
and output tensors of the same shape on every pro-
cessor. Furthermore, the dependence graph of the sub-
tasks on each processor is such that each subtask is
dependent solely on outputs of other subtasks on the
same processor. These dependencies are represented
by solid arrows between subtasks (white circles) in
Figure 2. As these arrows never cross processor
boundaries, all inter-task dependencies are local to a
processor. It thus makes sense for these operations
to be fused and share meta-tasks to amortize the
associated overhead. The effect of fusion is illustrated
in Figure 4, in which the three involved operations
(negation, additions, and exponentiation) now take
place in the same task.

An efficient implementation of distributed task
fusion requires some changes to the execution model,
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Figure 4: Task graph before (left) and after (right) fusion of the sub-program T3 = np.exp(-R * T),
from line 26 of the Black-Scholes code in Listing 1. Each operation (eg T1 = -R) is executed in parallel by
a sequence of subtasks (white) distributed across separate processors (blue). Each subtask executes the given
operation on distinct partitions (yellow) of the arrays. After task fusion, only one index launch is necessary.

1 import cuNumeric as np
2

3 def cnd(d):
4 A1 = 0.31938153
5 A2 = -0.356563782
6 A3 = 1.781477937
7 A4 = -1.821255978
8 A5 = 1.330274429
9 RSQRT2PI = 0.39894228040143267793994605993438

10 K = 1.0 / (1.0 + 0.2316419 * np.absolute(d))
11 cnd = (
12 RSQRT2PI
13 * np.exp(-0.5 * d * d)
14 * (K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5)))))
15 )
16 return np.where(d > 0, 1.0 - cnd, cnd)
17

18 def black_scholes(S, X, T, R, V):
19 sqrt_t = np.sqrt(T)
20 d1 = np.log(S / X) + (R + 0.5 * V * V) * T / (V * sqrt_t)
21 d2 = d1 - V * sqrt_t
22 cnd_d1 = cnd(d1)
23 cnd_d2 = cnd(d2)
24 T3 = np.exp(-R * T)
25 call_result = S * cnd_d1 - X * T3 * cnd_d2
26 put_result = X * T3 * (1.0 - cnd_d2) - S * (1.0 - cnd_d1)
27 return call_result, put_result

Listing 1: Black-Scholes code in Python + cuNumeric. As seen on line 1, replacing NumPy’s backend with
cuNumeric’s is a matter of changing this import line. Every operation is fusable—the entire program could
be run as a single index task launch.
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including a software mechanism for buffering oper-
ations for possible fusion before submitting them to
the task queue. Fusing multiple index launches into a
single index launch is also semantically different from
fusing single tasks. In fact, fusing index launches is
not always correct and we will motivate and present
the conditions under which fusion is possible in
Section III-B. While task fusion is not new [1],
[12], our contribution addresses this more general
problem of fusing collections of distributed tasks.
Our particular fusion implementation resides in the
Legate runtime’s back-end as a new part of Legate’s
task generation pipeline. Our task fusion algorithm
is completely automatic and transparent to Legate
programmers. Fusing tasks requires no changes to
user-facing cuNumeric code.

A. Fusion Algorithm

The first step in distributed task fusion is to analyze
a window of index launches which have not yet
been submitted to the runtime. In the context of our
initial example T3 = np.exp(-R * T), the three
tasks would not be executed immediately, but instead
placed in a buffer (a queue which holds the window of
tasks) for deferred execution. This window is flushed,
and its tasks executed, once it reaches a certain size
or when the runtime encounters an I/O operation that
requires access to a data value computed by any
of these tasks. Similar buffering is used in many
dynamic runtimes where there is a need to collect and
analyze a sequence of operations before execution
[10], [13], [19], [22], [23].

The length of the window of deferred tasks is an
upper bound on the maximum number of tasks that
can be fused. While the maximum length of this
window is adjustable, in our benchmarks it is always
beneficial to fuse as many tasks as possible. We set
the maximum window size to 50, which is around
the highest degree of fusion that could be achieved
in any of our benchmarks.

The fusion process is illustrated with Python pseu-
docode in Listing 2.

1 window = [ordered sequence of Legate tasks]
2 fusable_subsequences = [window]
3 #apply fusion constraints
4 for constraint in constraints:
5 fusable_subsequences = constraint.

place_fusion_barriers(
fusable_subsequences)

6

7 fused_tasks = []
8 for subsequence in fusable_subsequences:
9 fused_tasks.append(createFusedTask(

subsequence))
10

11 #sends fused tasks to legion for execution
12 #for distributed execution
13 for fused_task in fused_tasks:

14 launch(fused_task)

Listing 2: Pseudocode for generating and launching
a sequence of fused tasks from an initial window
of unfused tasks. This code applies each of the
four constraints to the window of unfused, buffered
tasks. Each constraint will place barriers within the
window that denote where we cannot fuse across
tasks. Contiguous subsequences of tasks without a
barrier are thus safely fusible subsequences of task.
Each such fusible subsequence will then be converted
to a fused task.

Once we have a window of tasks we apply four
fusion constraints (described in Section III-B), which
are rules that dictate which tasks can be fused. Barri-
ers are placed between tasks wherever fusing across
that barrier would violate program correctness. Once
barriers have been placed for all four constraints,
we are left with an ordered list of subsequences of
barrier-free tasks—each of these subsequences is a
fusable sequence of tasks. The fuser then builds a
new task F for each fusable subsequence, removes
the original unfused buffered tasks from the window,
and replaces them with F . If a subsequence contains
only one task it is not replaced, as creating a fused
task for a single subtask is not an improvement.

During the fused task’s execution, the fused task
will call the respective functions for launching each
subtask’s operation by simply invoking a function
pointer—all of the task overhead at this point has
been handled by the interface to the fused task and
the internal invocation of the subtasks is simply a
function call. A fused task’s outputs are the union
of all its subtasks’ outputs, and its inputs are the
union of all its subtasks’ inputs, minus those which
are also outputs of other subtasks. This increase in
the number of task inputs and outputs reflects the
increased granularity of the fused task—some task
level parallelism amongst the tasks is traded for
reductions in index task launch overheads.

The order of tasks in the fusion window always
respects any task dependences, and is thus a valid
scheduling order. Our implementation only fuses con-
tiguous tasks within the window, which simplifies the
implementation of the fuser. Higher levels of fusion
could possibly be achieved by fusing non-contiguous
tasks; we leave this as potential future work.

Our task fusion implementation has the ability to
operate on tasks regardless of whether they execute
on CPUs or GPUs, but currently we assume that
all tasks must run either completely on GPUs or
completely on CPUs. An extension to support hybrid
parallel workloads, with some tasks running on CPUs
and others on GPUs, is straightforward: we would
add a constraint to enforce that fused tasks must run
on the same processor type. This extension was not
needed in any of our benchmark applications, which
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map all NumPy operations uniformly to either CPUs
or GPUs.

B. Constraints on Fusion

It is not the case that the subtasks of multiple
index launches can always be fused. In this section
we give four constraints on when tasks in the fusion
window can be combined. These constraints represent
sufficient, but not strictly necessary, conditions under
which task fusion is permissible. While in theory
some of these conditions could be relaxed to enable
further optimization, in each case it would add signif-
icant complexity to the design point we have chosen.
The constraints are:

Communication Absence: Recall that tasks cannot
communicate with other tasks during their execution.
Thus, fusion may only be applied to a sequence
of operations that does not involve communication
within the tasks’ collective execution period. Fusing
index tasks where the fused subtasks only communi-
cate internally (such as our motivating example T3
= np.expr(-R*T) is legal. Reduction operations,
however, cannot be fused, as the implementation
of parallel reductions requires partial reductions to
be communicated between processors during the re-
duction’s execution. We enforce this constraint by
ensuring that only certain operations are considered
for fusion, implemented by simply inspecting each
task’s opcode.

Launch Space Equivalence: Each index launch is
associated with a launch space. Each launch space is
a tuple specifying dimensions of a grid of processors
used to execute the respective task. Given a window
of contiguous tasks, all encapsulated tasks must have
equivalent launch spaces for the fused task to have a
single launch space for a single overall index launch.
In general, the launch space can be multidimensional
(though we have only considered one dimensional
launch spaces for simplicity) and will often corre-
spond to a domain decomposition of the input data
(e.g., a 2D input matrix naturally maps to a 2D launch
space). Consider, for example, one index launch that
is associated with a 2x2 grid of processors, and a
subsequent index launch that is associated with a
3x3 grid of processors. If the 2x2 and 3x3 launch
spaces use a common array, the index launches are
not fusable; communication would be required to
move data from a 2x2 domain decomposition to a 3x3
decomposition, violating the requirement that fused
tasks cannot have inter-task communication except at
task boundaries.

Projection Equivalence: Each view of an array
is associated with a projection function that maps
each subtask’s index to the subview of the array
that subtask needs. Tasks can only be fused if, for
any array they have in common, the result of the
projection function for that array is the same. In other

words, fused subtasks must all have the same view
of any array they have in common.

Producer-Consumer Restriction: This constraint
prevents fusion of tasks in which there exist producer-
consumer relationships between different views of the
same array. If an index launch writes to view A of
an array, and a subsequent index launch reads from
a different view B of the same array, then the index
launches are not fusable. This constraint is motivated
by the fact that in producer-consumer relationships
involving different views, we cannot guarantee within
a single fused task that writes through one view of
an array (originating in one subtask) are guaranteed
to be seen by reads from a different view of the
same array (originating in a different subtask). The
issue is the same as in standard languages such as
C, where aliasing of arguments to a function call is
not well-defined, as the implementation may make
copies of the aliased arguments and lose the aliasing
relationship. Conversely, if two index launches use
the same view of an array, or only read from arrays,
then there is no restriction on fusion.

C. Examples

To illustrate the effect of the fusion constraints
in practice, we consider two additional examples, a
Jacobi solver and a 1D three point stencil.

1) Communication Absence and Launch Space
Equivalence: In a Jacobi solver, given matrix A and
vector b, we iteratively solve for x:�

1 d = np.diag(A)
2 R = A - np.diag(d)
3 for i in range(iters):
4 x = (b - np.dot(R, x)) / d
� �

Each iteration of the for loop involves the following
tasks and launch spaces (we omit one auxiliary task
for initializing array x).�

1 temp1 = DOT(R, x, launch_space=(2,2))
2 temp2 = SUB(b, temp1,launch_space=(4,1))
3 x = DIV(temp2, d, launch_space=(4,1))
� �

If, for example, there are four processors available,
the product of the dimensions in a launch space must
be less than or equal to four. The dot product task
above uses a 2x2 launch space that requires a 2D
domain decomposition of the matrix-vector opera-
tion, whereas the following two vector operations
operate on 1D arrays with a 1-dimensional launch
space. As each index task (including fused tasks)
in cuNumeric must have exactly one launch space,
the Launch Space Equivalence constraint allows the
SUB and DIV tasks to be fused, but not the DOT
product task. Of course, since 2*2=4*1, the total size
of the launch spaces are the same, so with some
rewriting of the tasks the launch spaces could be
made compatible. However, fusion would still fail; a
dot product involves inter-processor communication
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to reduce partial results and thus violates the Com-
munication Absence constraint.

2) Producer-Consumer Restriction and Projection
Equivalence: We modify our earlier three point sten-
cil to involve weights.�

1 east = input[0:-2]
2 central = input[1:-1]
3 west = input[2:N]
4 for i in range(num_iters):
5 output = east+west
6 central[:] = .5*output
� �

Executing two iterations of the for loop
issues the following index task launches:�

1 #iteration 1
2 output = ADD(east, west, launch_space=(4,1))
3 central = MUL(.5, output, launch_space=(4,1))
4

5 #iteration 2
6 output = ADD(east, west, launch_space=(4,1))
7 central = MUL(.5, output, launch_space=(4,1))
� �

In this case, all four index launches have the
same launch space, and none of the subtasks require
inter-processor communication. However, if all four
subtasks are fused, we will write to central in
the second subtask (MUL) and then read from views
east and west in the third subtask (ADD). In other
words, in the fused subtask, we would write to one
view of the input array, and then subsequently read
from a different view of the same array, violating
the Producer-Consumer Restriction. In this case, only
separate fusions of index launches 1-2 and 3-4 are
permitted.

It is more difficult to give a small and natural ex-
ample where Projection Equivalence comes into play,
as the projection functions depend on how arrays
are partitioned. Partitioning decisions are made by
cuNumeric’s auto-partioning heuristics, which may
or may not generate multiple partitions of the same
array such that the partitions have identical projection
functions. In practice, the heuristics will generally,
but not always, partition the same array the same way
in different tasks. In our three point stencil program,
for example, if the partitioner decided to partition the
input array differently for the first and second index
launches, then they could not be fused.

IV. RESULTS

The results of distributed task fusion on five bench-
marks are shown in Table I. Experiments were con-
ducted on the Piz Daint supercomputer, which con-
tains one P100 GPU per node. All experiments were
conducted on 32 node allocations against an unfused
baseline to demonstrate the speedups resulting from
elimination of task overheads. For four of the five
benchmarks, speedups between 1.1x and 1.55x are
observed. We also include one benchmark (Jacobi

Figure 5: Weak scaling of the stencil benchmark, with
fusion turned on and turned off.

Iteration) that contains little fusable work, in order to
characterize the performance and overhead of our task
fusion when there is little opportunity to fuse. The
Mandelbrot benchmark is adapted from the NPBench
[32] benchmark suite, while remaining benchmarks
are adapted from the cuNumeric repository.

As the workload per GPU decreases, runtime over-
heads will represent a higher percentage of execu-
tion time, meaning that task fusion speedups should
increase. We illustrate this trend with the Black-
Scholes benchmark in Table IV, running variable
sized workloads on a 4 GPU allocation on Piz Daint.

We show in Table III that each constraint is used
in at least one benchmark. As shown in Listing 2,
constraints are applied to the task window one at
a time, which saves work as subsequent constraints
are not tested at positions where there is already a
barrier. The Communication Absence constraint is the
cheapest to test and generally the most restrictive,
so we test it first and then test the more expensive
constraints at positions where Communication Ab-
sence did not apply. Thus, the numbers in Table III
do not represent all the places the constraints other
than Communication Absence could have been used,
just the places where they were used because no
previously tested constraint applied.

While fusion always improves the performance of
the stencil benchmarks, the speedup can decrease
when weak scaling across more processors, as seen
in Table I and Figure 5. This is not a limitation of
our implementation, but a behavior inherent to task
fusion due to the decrease in task-level parallelism
that occurs when tasks are aggregated and coars-
ened. Specifically, with coarser tasks there is less
opportunity to overlap the communication required
by one index launch with the computation performed
by another.

In the 27-pt stencil benchmark, for example, each
fusable subtask operates on shifted views of the
same input tensor (with each view corresponding to a
different point in the stencil). Ensuring that each pro-
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Speedup from Task Fusion on 1-32 GPUs
Benchmark 1 GPU 4 GPUs 8 GPUs 16 GPUs 32 GPUs
27-pt (3D) stencil 1.43x 1.40x 1.39x 1.38x 1.23x
Black-Scholes 1.55x 1.43x 1.45x 1.42x 1.44x
Mandelbrot 1.17x 1.13x 1.12x 1.12x 1.11x
Logistic Regression 1.18x 1.13x 1.11x 1.16x 1.15x
Jacobi Iteration 1.04x 1.00x .98x 1.02x .96x

Table I: Speedups resulting from task fusion, computed relative to the same program on the same number of
nodes without task fusion.

Percentage of All Tasks Fused and Metrics on Length of Fused Tasks
Benchmark min length avg length max length % tasks fused
27-pt (3D) stencil 2 18 47 98%
Black-Scholes 3 31.4 49 98%
Mandelbrot 2 49.8 50 100%
Logistic Regression 3 3 3 75%
Jacobi Iteration 2 2.75 3 63%

Table II: Summary statistics of the fused tasks’ sizes (number of encapsulated subtasks) in each benchmark,
and percentage of all tasks that are fused. Unfused tasks are not considered in the calculation of min, max,
and avg fused task sizes.

Barriers Generated by Each Constraint
Benchmark CommunicationAbsence LaunchSpace ProducerConsumer Projection
27-pt (3D) stencil 0% .1% 49.5% 50.4%
Black-Scholes 100% 0% 0% 0%
Mandelbrot 0% 0% 0% 0%
Logistic Regression 75% 25% 0% 0%
Jacobi Iteration 97.8% 2.2% 0% 0%

Table III: Percentage of total fusion barriers generated by each fusion constraint. Constraints are applied in
order shown, e.g. a ProjectionEquivalance barrier is not be placed if a CommunicationAbsence barrier was
already placed in the same place. Small percentages generally reflect barriers placed around initialization
tasks.

Black-Scholes speedups w/varying workloads.
N 51200 25600 6400 3200 1600
Speedup 1.39x 1.42x 1.46x 1.45x 1.44x

Table IV: N = number of options to price, in thou-
sands.

cessor has its respective shifted partition necessitates
some data movement induced by the index launch.
Such communication is allowed by fusion, as this
movement can precede all of the fusable subtasks’
execution and does not need to occur between or
during subtasks’s execution. As fusion reduces op-
portunities to overlap subtasks’ execution with the
data movement, fusion speedups in the stencil can
decrease with the higher latencies that come with
larger numbers of nodes.

The drop from 1.38x to 1.23x speedup going from
16 to 32 GPUs in the 27-pt stencil is likely due to
these increased communication times. The 32 GPU
allocation on Piz Daint is not a contiguous set of
nodes (but rather a set of subsets, which each contain
contiguous nodes). In this case, the allocation con-
tains a contiguous 16 node allocation, so scaling from
16 to 32 nodes introduces higher communication
costs that are harder to mask with coarser, fused
tasks. The Black-Scholes and Mandelbrot bench-

marks involve no memory movement during their
execution, meaning that task fusion speedup does not
decay when weak scaling up and remains relatively
constant.

The Jacobi Iteration benchmark is shown to
demonstrate what happens when there is little fusable
work. The associated speedups and slowdowns are
mostly inconsequential. In practice, as fusion has
a small overhead, our implementation could simply
disable fusion if it detects little fusable work. This
relative lack of potential fusion is illustrated in Ta-
ble II, which shows minimum, average and maximum
fused task sizes for each of our benchmarks, as well
as the percentage of total tasks that do get fused. All
four of these metrics are the lowest for the Jacobi
Iteration benchmark compared to those of the other
four benchmarks.

Finally, we note that in the Black-Scholes and
stencil benchmarks, about half of the speedup comes
from task fusion itself, and the other half from a
complementary optimization that primarily enables
higher levels of fusion, but also yields performance
benefits in itself. In cuNumeric, if a task t applies a
binary operation to a 64 bit floating point constant and
a 32 bit floating point array or vice versa, the constant
must be converted to the array’s type. Normally
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cuNumeric dispatches an entire task to handle this
conversion, which generates a future as its result.
Since we must have the value of the future to execute
the task t, the entire window of buffered operations
is flushed, effectively making the tasks unfusable. By
doing all such type conversions inline, outside of any
task, we eliminate the conversion task entirely and
increase the amount of potential fusion.

V. RELATED WORK

Fusing individual tasks is commonly done in prac-
tice, and has been utilized since the advent of mul-
tiprocessors [26]. Distributed task fusion is different
in that we are fusing multiple index launches, which
may communicate with data distributions in ways that
make classic fusion semantically incorrect.

A. Kernel Fusion

It is useful to make a distinction between kernel
fusion and our presented form of task fusion. Kernel
fusion refers to transformations for generating a more
efficient binary, requiring recompilation of code when
such transformations (e.g., loop optimizations) are
performed at run-time. These transformations involve
classic loop optimizations and are often comple-
mented by algebraic simplifications of mathematical
operations that reduce FLOP counts. On a GPU,
where some loops are implicit as a grid of threads,
analogous optimizations can be made by fusing sepa-
rate passes over memory into a single GPU compute-
kernel, thus eliminating the need to write and then
read temporary results from DRAM. Task fusion,
however, refers to the aggregation of separate tasks
into a single task launch. The program binaries and
loops remains the same, as the primary objective is
not to apply program transformations via JIT compi-
lation, but to amortize the overheads associated with
launching and managing a series of tasks in a parallel,
distributed system. With task fusion, finer granularity
tasks can be efficiently supported, as the management
overhead is paid only once per task launch.

While we distinguish between task fusion and
kernel fusion, they share similarities that warrant
a brief discussion of the existing kernel fusion lit-
erature. Multiple frameworks, including JAX [13],
Bohrium [17], and Numba [18] are capable of JIT
compiling Python functions to C while applying
loop transformations and parallelization operations,
offering significant speedup over a baseline such as
CPython [2]. There is also considerable recent interest
in kernel fusion in machine learning frameworks,
such as PyTorch’s [23] TorchScript [11], Tensorflow’s
[3] XLA compiler [25] (which forms the backbone
of JAX), and Nvidia TensorRT [29], all of which
provide kernel fusion capabilities. Such optimizations
are warranted by the existence of common layer
patterns in neural networks (e.g. convolution-ReLU

pairs), which are generally amenable to kernel fusion
on CPUs, GPUs and other accelerators.

Weld [22] is a recent framework that allows for
kernel fusion of operations from different libraries,
under the condition that each library can be com-
piled to a common, Weld-specific IR. Similar to task
fusion, Weld operations are deferred before being JIT
compiled into an optimized binary.

B. Parallel Runtimes

We have implemented distributed task fusion in
Legate, the backend for cuNumeric [5]. Task fusion
comprises a new stage in Legate’s task launching
pipeline. Legate is a tasking layer for Python. Legate
itself is built on Legion, a more general-purpose and
lower level distributed runtime [8]. Legate partitions
arrays, determines the associated projection func-
tions, and then generates tasks for each cuNumeric
call before submitting the tasks and partitioning in-
formation to Legion.

StarPU [4] and PaRSEC [15] are two runtimes with
some similarities to Legion, in particular targeting
high performance computing applications and sup-
porting relatively fine-grained distributed task execu-
tion. While neither has a programming model with
a notion of group task launches directly comparable
to Legion’s index launches, the issues around fusing
a sequence of related subtasks across processors are
nevertheless the same, though expressed differently
at the program level.

On a single GPU, the Pagoda [30] and Pastel-
Palettes [20] runtimes manage execution of opera-
tions within a GPU single kernel. The runtime and
control logic of these systems is implemented directly
in a CUDA kernel, which complicates the engineering
of implementing task fusion.

Ray [21] is a recent framework for distributed
Python applications that allows for the asynchronous
launch of parallel Python tasks. While Ray’s core
library is a general purpose framework for distributed
applications, Ray primarily targets machine learning
and reinforcement learning workloads. Ray tasks are
not fundamentally distributed like those in index
launches, but Ray tasks are meant to be coarse, so it
could potentially benefit from a form of task fusion.

Dask, which has a similar programming model to
Ray, has a notion of task fusion in which the user
can aggregate tasks to be collectively scheduled as
one unit [1], [24]. In Dask, however, the goal of task
fusion is primarily to guarantee that certain tasks run
on a single processor, rather than to reduce runtime
overheads.

VI. FUTURE WORK

One area of future work involves Legate’s auto-
partitioning mechanism, which determines a map be-
tween processors and partitions of arrays. Currently,

9



the partitioner makes decisions based on individual
tasks alone, and does not have any knowledge of
task fusion. There are cases when multiple valid
partitions of the data are possible, specifically in
large fused tasks that may involve many different
views of the same input tensor (such as the 27-pt
stencil). In such cases, different partitioning strategies
can result in different amounts of pre-task execution
data movement. Hence, the auto-partitioner could be
improved with heuristics that determine a reasonable
partitioning strategy that results in data locality rea-
sonably amenable to each of the subtasks’ data needs.

Another direction is related to the previously men-
tioned possibility of fusing tasks that are not contigu-
ous in a task window. One possible strategy could
be to fuse only dependent tasks, forming fused tasks
that internally have mostly sequential dependencies.
Such an approach could conceivably retain more task
parallelism while still reducing run-time overheads
substantially.

Our algorithm in Listing 2 is not the only way
to generate subsequences of fusable tasks. If for
example, given a sequence of four tasks, a constraint
determines that tasks 1 and 4 are not fusable, then our
algorithm will place a barrier immediately before the
first unfusable task, i.e. between tasks 3 and 4. It is
equally valid to place the barrier anywhere between
tasks 1 and 4. However, we have not observed any
instances in our benchmarks where such flexibility
actually occurs.

Finally, once tasks have been fused, it is then
theoretically possible to further optimize the fused
task with kernel and loop fusion, especially in the
interest of reducing accesses to memory. While this
would require JIT compilation and a backend IR for
rewrites, it would likely generate further speedup.

VII. CONCLUSION

We have presented distributed task fusion, a run-
time optimization for reducing the overheads asso-
ciated with fine-grain group task launches in task-
based systems. We describe and implement this opti-
mization in the context of cuNumeric workloads, as
cuNumeric’s runtime performs automatic partitioning
of data and index launches that often produce very
small tasks. We have described four conditions under
which task fusion is permissible and demonstrated
the benefits of task fusion on several benchmarks,
observing 1.1x - 1.5x speedups on several workloads
scaled up to 32 GPU nodes without any changes to
the underlying program.
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APPENDIX

A. Appendix A: Artifact Evaluation/Description Ap-
pendix

1) Summary of Experiments: All experiments
were run on the Piz Daint system in the Swiss Na-
tional Supercomputing Centre. We used allocations of
up to 32 nodes. All code and scripts used to generate
results are available in public github branches of
legate.core and cuNumeric

2) Artifact Availability: DOIs for repositories of
Legate.core and cuNumeric containing the task fusion
implementation are provided:
Legate.core:
https://zenodo.org/badge/latestdoi/411056638
cuNumeric:
https://zenodo.org/badge/latestdoi/409288575

Links to the github repos are provided in Subsec-
tion A5.

3) Piz Daint Hardware: :
Processor: Xeon E5-2690v3 12C 2.6GHz
GPU: Nvidia Tesla P100
Interconnect: Aries interconnect
compute node CPU info (lscpu):

1 Architecture: x86_64
2 CPU op-mode(s): 32-bit, 64-bit
3 Byte Order: Little Endian
4 Address sizes: 46 bits physical, 48

bits virtual
5 CPU(s): 24
6 On-line CPU(s) list: 0-23
7 Thread(s) per core: 2
8 Core(s) per socket: 12
9 Socket(s): 1

10 NUMA node(s): 1
11 Vendor ID: GenuineIntel
12 CPU family: 6
13 Model: 63
14 Model name: Intel(R) Xeon(R) CPU E5

-2690 v3 @ 2.60GHz
15 Stepping: 2
16 CPU MHz: 1452.011
17 CPU max MHz: 2601.0000
18 CPU min MHz: 1200.0000
19 BogoMIPS: 5199.78
20 Virtualization: VT-x
21 L1d cache: 32K
22 L1i cache: 32K
23 L2 cache: 256K
24 L3 cache: 30720K
25 NUMA node0 CPU(s): 0-23

4) Software Environment: :
OS: SUSE Linux Enterprise Server 15 SP2
OS Version: 15.2
CUDA Compiler Version: 11.1
CUDA arch: sm 60
NVIDIA Driver Version: 470.57.02
Python Version: 3.8.13(Anaconda)
C++ compiler version: g++ (SUSE Linux) 7.5.0

5) Software Installation: Both legate.core and
cuNumeric (previously known as legate.numpy)
must be cloned into the same parent directory, and
then built.
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cuNumeric repo:
git@github.com:shivsundram/legate.numpy.git
legate.core repo:
git@github.com:shivsundram/legate.core.git

For both repositories, the partitionExp2 branch
should be used. Directions for installing both are on
the repositories’ github pages and repeated here:
https://github.com/shivsundram/legate.core
https://github.com/shivsundram/legate.numpy

OpenBLAS should also be downloaded and
built within the same directory as legate.core and
cuNumeric/legate.numpy, from the following repo:
https://github.com/xianyi/OpenBLAS

The cuNumeric conda environment should be
downloaded using:

1 conda env create -n legate -f conda/
cunumeric_dev.yml

legate.core can then be installed via:
1 cd legate.core
2 ./install.py --gasnet --conduit aries --cuda

--arch pascal --with-cuda /usr/local/
cuda-11.1/

cuNumeric can then be installed via:
1 cd ../legate.numpy
2 mkdir install
3 python setup.py --prefix ./install --with-

core ../legate.core/install/ --with-
openblas ../OpenBLAS/install/

6) Experiment Scripts: On Piz Daint first request
a 32 node allocation with

1 salloc -N 32 -C gpu -A ACCOUNT_NAME

From the legate.numpy directory, results from Table I
can be reproduced with

1 conda activate legate
2

3 #run 27pt stencil
4 ./sweep.sh -w
5

6 #Jacobi
7 ./sweep.sh -j
8

9 #Black-Scholes
10 ./sweep.sh -b
11

12 #Mandelbrot
13 ./sweep.sh -m
14

15 #Logistic Regression
16 ./sweep.sh -l

From the legate.numpy directory, results from Ta-
ble IV can be reproduced with

1 conda activate legate
2 #black scholes on 4 nodes with various

workloads
3 ./sweep.sh -v

The above can be done with a 4 node allocation,
though it can be run in the same 32 node allocation
requested before.

7) System Environment: The system must be ac-
cessed first via the gateway ela.cscs.ch, from which
one can ssh into daint.cscs.ch.

We use the standard environment provided by Piz
Daint, with two additional submodules imported via
the following commands to enable GPU support:

1 module load daint-gpu
2 module load cudatoolkit/11.1.0_3.39-4.1

__g484e319

8) Statistical Information of Benchmarking Out-
put: For reproducibility purposes, the tables be-
low provide statistics on each benchmark mentioned
above (using the commands mentioned in this ap-
pendix). This data was collected on Piz Daint and
used to calculate the speedups in Table I and Ta-
ble IV. Each benchmark was run 12 times. The
minimum and maximum times were discarded when
calculating the average runtimes and their standard
deviations. All times are in milliseconds.
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27-pt stencil: Average Runtimes (ms), Standard Deviation (ms), nSamples, Input Size
nGPUs Avg Fused Run-

time
Stdev Fused Avg Unfused

Runtime
Stdev Unfused nSamples Input size (tensor

volume)
1 13644.17 12.23 19520 30.63 10 6751269
4 16394.02979 23.13587 22981.549 23.42940097 10 27005076
8 16522.64399 19.38054138 22935.1987 18.12132 10 54010152
16 16789.2873 23.23641161 23141.67 15.86677094 10 108020304
32 18896.932 419.494833 23228.158 89.2769162 10 216040608

Table V: Statistical information regarding data in Table I for stencil example. Each sample performs 500
iterations of the stencil loop.

Black Scholes: Average Runtimes (ms), Standard Deviation (ms), nSamples, Input Size
nGPUs Avg Fused Run-

time (ms)
Stdev Fused Avg Unfused

Runtime (ms)
Stdev Unfused nSamples Input size (thou-

sands of options)
1 7761.2302 8.211 12061.6361 20.796 10 3200
4 9850.6536 30.6158 14075.568 19.309 10 12800
8 9948.499 5.50006 14472.0861 15.70065 10 25600
16 10011.3695 13.9958 14189.81399 37.845709 10 51200
32 10025.0068 14.889 14400.74549 20.0482 10 102400

Table VI: Statistical information regarding data in Table I for Black Scholes example.

Mandelbrot: Average Runtimes (ms), Standard Deviation (ms), nSamples, Input Size
nGPUs Avg Fused Run-

time (ms)
Stdev Fused Avg Unfused

Runtime (ms)
Stdev Unfused nSamples Input size (nPix-

els)
1 6956.4325 11.846573 8154.1689 27.54872 10 1000000
4 8705.2407 23.530865 9808.867 19.11836667 10 4000000
8 8817.6824 19.68045065 9792.0721 37.620265 10 8000000
16 8934.8546 71.07874 9891.1459 92.09724704 10 16000000
32 8963.2311 177.1096279 9909.8162 91.42899066 10 32000000

Table VII: Statistical information regarding data in Table I for Mandelbrot example. Each sample performs
500 iterations on the image.

Logistic Regression: Average Runtimes (ms), Standard Deviation (ms), nSamples, Input Size
nGPUs Avg Fused Run-

time
Stdev Fused Avg Unfused

Runtime
Stdev Unfused nSamples Input size

(nPoints)
1 4775.507399 13.6548 5658.874 23.83421 10 1600000
4 6058.1377 14.86975 6871.0497 293.36 10 6400000
8 6154.466 12.9798 6836.79 328.867 10 12800000
16 6457.2917 19.0241 7513.4415 300.3213 10 25600000
32 11258.193 164.219881 12919.134 301.016362 10 51200000

Table VIII: Statistical information regarding data in Table I for Logistic Regression example. Each data point
has 32 features. Each sample performs 500 iterations.

Jacobi Iteration: Average Runtimes (ms), Standard Deviation (ms), nSamples, Input Size
nGPUs Avg Fused Run-

time (ms)
Stdev Fused Avg Unfused

Runtime (ms)
Stdev Unfused nSamples Input size (matrix

size)
1 9225.5936 11.5285 9612.5388 23.9947 10 40955775
4 11833.4186 20.599334 11879.41449 31.008652 10 163823100
8 14772.8015 1823.002094 14542.982 846.70585 10 327646201
16 14092.8893 245.711837 14422.4889 186.65693 10 655292402
32 32301.1099 2394.2737 31075.4364 806.3412 10 1310584804

Table IX: statistical information regarding data in Table I for the Jacobi example. Each sample performs 5000
iterations of Jacobi iteration.

Black Scholes w/varying workloads (4 GPUs): Average Runtimes (ms), Standard Deviation (ms), nSamples, Input Size
nGPUS Avg Fused Run-

time
Stdev Fused Avg Unfused

Runtime
Stdev Unfused nSamples Input size (thou-

sands of optinos)
4 9908.701 11.23012 13763.407 26.8776 10 51200
4 9845.357 14.6384085 14065.97 22.307366 10 25600
4 9818.412 11.325159 14375.0252 21.7134586 10 6400
4 9823.119 10.57022 14214.1891 18.082326 10 3200
4 9832.4827 14.36487186 14179.728 15.992181 10 1600

Table X: Statistical information regarding data in Table IV for Black Scholes example w/ varying workloads.
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