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ABSTRACT
We present Realm, an event-based runtime system for het-
erogeneous, distributed memory machines. Realm is fully
asynchronous: all runtime actions are non-blocking. Realm
supports spawning computations, moving data, and reser-
vations, a novel synchronization primitive. Asynchrony is
exposed via a light-weight event system capable of operat-
ing without central management.

We describe an implementation of Realm that relies on a
novel generational event data structure for efficiently han-
dling large numbers of events in a distributed address space.
Microbenchmark experiments show our implementation of
Realm approaches the underlying hardware performance lim-
its. We measure the performance of three real-world ap-
plications on the Keeneland supercomputer. Our results
demonstrate that Realm confers considerable latency hid-
ing to clients, attaining significant speedups over traditional
bulk-synchronous and independently optimized MPI codes.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.2.12 [Software Engineering]: Interoperability

Keywords
Realm; Legion; distributed memory; deferred execution; events;
reservations; heterogeneous architectures; runtime

1. INTRODUCTION
All parallel programs can be thought of as graphs with

nodes representing operations to be performed and edges
representing ordering constraints, such as control or data
dependences. To simplify the task of mapping parallel pro-
grams to distributed memory machines, runtime systems
take several distinct approaches to expressing and manip-
ulating these graphs.

In implicit representation systems, the runtime is unaware
of the dependences between operations and the burden of
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orchestrating and optimizing the program for each target
architecture falls primarily on the programmer; MPI [36]
and X10 [17] are examples of systems in which the program-
mer encodes the partial order on the execution of operations
using primitives for launching parallel work and perform-
ing synchronization. In explicit representation systems, the
runtime has direct access to the graph of operations and
takes responsibility for all synchronization and scheduling.
Explicit representation systems can yield both higher per-
formance (because an automated system can exploit oppor-
tunities for overlapping operations that are too difficult for
a programmer to express) and more portable performance
(because choices for a particular machine are not baked in
to the program). Recent examples of explicit representation
systems include Sequoia [22], Tarragon [18], and Determin-
istic Parallel Java (DPJ) [10].

Most explicit systems for distributed memory machines
are static, meaning the dependence graph of operations is
available at compile time. In contrast, dynamic explicit sys-
tems must manage the graph as it is generated on-line by the
client, and any runtime system overheads will limit perfor-
mance. The additional cost of communication in distributed
memory machines makes dynamically handling graph con-
struction and execution challenging, traditionally relegating
the scope of dynamic explicit systems to shared memory
machines. However, dynamic explicit systems are essential
when dealing with applications with data-dependent par-
allelism or reacting to large variations in hardware perfor-
mance. As applications become more irregular and the per-
formance of distributed machines exhibits more variation
due to heterogeneity and power saving techniques[35], dy-
namic explicit systems will become important for achieving
high performance.

In this paper we present Realm, a dynamic, explicit rep-
resentation runtime system for heterogeneous, distributed
memory machines. Realm uses a light-weight event system
to dynamically represent the program graph. Client appli-
cations use Realm events to encode control dependences be-
tween computation, data movement, and synchronization
operations. Using generational events, a novel implemen-
tation technique, Realm compresses the representation of
many events into a single generational event and eliminates
the need for Realm (or the programmer) to manage the life-
time of every event. This allows events to be passed by value
and stored in arbitrary data structures without reference-
counting overhead or explicit deallocation performed by pro-
gram code. The reduction in storage costs and overhead al-
lows Realm to provide the benefits of a dynamically-generated



explicit representation even for programs that are distributed
across many nodes.

We begin in Section 2 with more discussion of related
work in parallel runtime systems. Section 3 covers how light-
weight Realm events enable a deferred execution model, how
deferred execution differs from standard asynchronous mod-
els, and motivates the need for the other novel features of
Realm including reservations and physical regions. Section 4
gives an overview of the Realm interface. Each subsequent
section highlights one of our primary contributions:

• Section 5 describes the use of Realm events and how
events are implemented with generational events. The
low cost of managing events in Realm is central to the
overall design, as Realm clients allocate events at rates
in the tens of thousands per second per node.

• Section 6 introduces reservations for performing syn-
chronization in a deferred execution model, thereby
enabling relaxed execution orderings not expressible in
many explicit systems. We show how reservations are
typically used by Realm clients and present an efficient
implementation.

• Section 7 covers Realm’s physical region system and
how it supports data movement in a deferred execution
model. We also cover Realm’s novel support for bulk
reductions.

• Section 8 evaluates Realm on a collection of microbench-
marks that stress-test our implementations of events,
reservations, and data movement operations. We show
that the performance of Realm’s primitives approach
the limits of the underlying hardware.

• Section 9 details the performance of three real-world
applications written in both an implicit representa-
tion model and in Realm’s explicit deferred execution
model. In one case we also compare against an in-
dependently written and optimized MPI code. We
find that applications using Realm range from 22-135%
faster than equivalent implicit versions.

2. BACKGROUND AND RELATED WORK
In this section we discuss both related work and the dis-

tinctions between implicit/explicit and static/dynamic run-
time systems in more detail. The presentation of Realm
begins in Section 3. A categorization of a number of (but by
no means all) classic and recent parallel runtimes is given in
Table 1.

The most widely used high-performance parallel runtime
is MPI [36], which is an implicit representation system. MPI
implements a bulk-synchronous model in which programs
are divided into phases of computation, communication, and
synchronization [24]. A common bulk-synchronous idiom is
a loop that alternates phases:

while (...) {

compute(...); // local computation

barrier;

communicate(...);

barrier;

}

By design, computation and communication cannot happen
at the same time in a bulk synchronous execution, idling

Implicit Representation Systems
MPI [36] GASNet [41] Co-Array Fortran [33]

UPC [12] Titanium [40] Chapel [15]
X10 [17] HJ [14]

Cilk [9] Charm++ [29]

Explicit Representation Systems
Static Dynamic

TAM [19] Id [4]
Sequoia [22, 26] DPJ [10] StarPU [5] TAM [19]

Tarragon [18] CnC [31, 11] Realm
Lucid [27] CGD [37]

Table 1: Categorization of parallel runtimes.

significant machine resources. Thus, MPI has evolved to
include asynchronous operations for overlapping communi-
cation and computation. Consider the following MPI-like
code:

receive(x, ...);

Y; // see discussion

sync;

f(x);

Here x is a local buffer that is the target of a receive op-
eration copying data from remote memory. The receive

executes asynchronously—the main thread continues execu-
tion with Y while the receive is also executing—but the
only way to safely use the contents of x is to perform a sync

operation that blocks until the receive completes.
It is the responsibility of the programmer to find useful

computation Y to overlap with the receive. There are sev-
eral constraints on the choice of Y. The execution time of Y
must not be too short (or the latency of the receive will
not be hidden) and it must not be too long (or the continu-
ation f(x) will be unnecessarily delayed). Since Y can’t use
x, Y must be an unrelated computation, which can result in
non-modular code that is difficult to maintain.

Thus, the programmer is responsible not only for adding
sufficient synchronization but also for static scheduling (e.g.,
overlapping Y with the receive). Other implicit runtimes
have the same issue, as only the programmer has the knowl-
edge of what can be parallelized. The PGAS languages
(UPC [12], Titanium [40] and Co-Array Fortran [33]) are,
for the purposes of this discussion, very similar to MPI.
Other programming models that differ significantly from
the bulk synchronous model still require user-placed and
potentially blocking synchronization to join asynchronous
computations (e.g., Cilk’s spawn/synch [9], X10’s [17] and
Habanero Java’s [14] asynch/finish and Chapel’s rich collec-
tion of synchronization constructs [15]). The actor model
provided by Charm++ [29] is a form of implicit represen-
tation, as the runtime has no knowledge of what messages
will be sent by a message handler until it is actually ex-
ecuted. Charm++ also provides futures that allow asyn-
chronous computations to be called; a thread using a future
executes an implicit synchronization operation if the value
is not yet available.

Static explicit systems vary widely in how they represent
the graph of dependent operations. Some, including classic
dataflow systems such as Id [4], provide languages that are
very close to the underlying static graphs. There are also re-
cent examples, particularly for coarse-grain static dataflow



[27, 37]. Tarragon [18] is a good example of the wide range of
possible semantics for static systems, having a more actor-
like instead of purely dataflow semantics for its graphs. An-
other example is Concurrent Collections (CnC) [11], which
incorporates both control and data dependence edges in the
graph. In other static explicit systems the static graph is
is constructed as a compiler’s intermediate representation;
examples are Sequoia [22] and Deterministic Parallel Java
(DPJ) [10].

A significant advantage of static dependence graphs is
that they can be scheduled at compile time, resulting in
very low runtime overheads, which in turn enables exploita-
tion of finer-grain parallelism. Furthermore, because the de-
pendence graph is explicit, the user is relieved of specifying
the overlap of operations, allowing the implementation more
scope for optimizations and different strategies for different
platforms. There are two disadvantages to static explicit
systems. The first is that dynamic decision making, while
not impossible, must be encoded as a choice among a static
set of possibilities, leading to cumbersome implementations
that would be simple in a dynamic setting. The other is-
sue is that partial orders specified by graphs cannot express
some useful weaker dependence patterns, and in fact some
explicit systems have added constructs that capture weaker
ordering constraints at the cost of more complex semantics
and implementations [3].

In contrast, there are few previous dynamic explicit sys-
tems for distributed memory machines. TAM is a low-level
runtime for dataflow languages that targets conventional
hardware. TAM is a hybrid static/dynamic system and is
listed in Table 1 in both categories. At a fine grain (roughly,
within a function body) TAM is quite static, which is neces-
sary to exploit very fine grain parallelism. At coarser gran-
ularity TAM is dynamic, with the graph of dependences be-
tween frames evolving at runtime. TAM, which was designed
for much smaller machines than today’s heterogeneous su-
percomputers, leaves the runtime management of the dy-
namic parts of the graph to the client. TAM also has no
facilities for relaxed execution orderings nor for bulk reduc-
tions. Parallex [23, 28] is a more recent system with similar-
ities to TAM, in that it is thread-based and latency-hiding
is achieved through cooperative multithreading.

StarPU [5] is closer to Realm, providing a similar interface
to build a dynamically generated control-dependence graph.
Like Realm, it provides separate data movement primitives
that appear as operations in the graph. StarPU has no prim-
itive equivalent to Realm’s reservations for expressing syn-
chronization in a deferred execution environment, and does
not support bulk reductions, two of the novel features of
Realm. Furthermore, StarPU’s tags, which play the role of
Realm’s events, are managed by the client, not by StarPU,
which means they cannot be optimized for time or space con-
sumption. It is important to note that the goals of StarPU
and Realm are also different: Realm is intended to be a low-
level runtime for higher-level languages and runtimes that
will run efficiently on very large heterogeneous machines;
StarPU is designed with a pragmatic C-level interface to be
used directly by programmers.

Ompss also provides a dynamically constructed, explicit
graph of operations[20]. Ompss’ graphs are heavier weight
than Realm’s, including data as well as control dependences.
This prevents Ompss from replicating the important per-
formance optimizations performed by Realm for distributed

memory machines. Realm also differs in providing reserva-
tions as well as physical regions and associated operations,
such as bulk reductions.

Many distributed systems use a publish/subscribe abstrac-
tion for supporting communication that has similarities to
Realm’s events and event waiters[2, 13]. Work has also been
done on using object-oriented languages to build event-based
distributed systems[21, 25, 16]. Events in these systems
are much heavier weight and often carry large data pay-
loads. Many systems focus on resiliency instead of perfor-
mance[34].

3. DEFERRED EXECUTION
On distributed memory architectures communication costs

can easily dominate performance. Thus, all distributed mem-
ory runtime systems must provide mechanisms for hiding
long latency communication. Dynamic explicit runtimes
have a unique additional problem: the operations to con-
struct the dynamic graph are themselves potentially long
latency. However, by providing a well-designed client inter-
face, Realm is able to use the same mechanism to hide both
forms of latency.

In Realm, all operations execute asynchronously. When
invoked, every Realm operation returns immediately with an
event that triggers when the operation completes. Further-
more, every Realm operation takes an event as a precondi-
tion, and the operation is guaranteed not to begin until the
precondition event has triggered. Consider an application
that needs to run operations A and B on different nodes,
where A produces data a that must be copied to the input
b of B, and also operations C and D, where D depends on
C. The Realm client would issue the following calls:

Event e1 = p1 . spawn (A, . . . , NO EVENT) ;
Event e2 = a . copy to (b , e1 ) ;
Event e3 = p2 . spawn (B , . . . , e2 ) ;
Event e4 = p1 . spawn (C , . . . , NO EVENT) ;
Event e5 = p1 . spawn (D, . . . , e4 ) ;

Here p.spawn(X,...) means operation X is to be run on
processor p. The use of events e1, e2, and e4 as precondi-
tions tells Realm how to construct the dynamic dependence
graph:

run
A

copy
a→ b

run
B

run
C

run
D

e1 e2

e4

This example illustrates two important points. First, events
in Realm represent control dependences only—events carry
no data and copies are themselves operations in the graph.
The simplicity of events enables the representation and op-
timizations discussed in Section 5.

Second, from the client’s point of view these five state-
ments execute without delay—all the operations are launched
asynchronously and the client is never required to block on
any Realm operation. In general, the use of events as de-
pendences between operations allows clients to launch arbi-
trarily deep acyclic graphs of dependent operations without
the need to block on intermediate results. To the best of
our knowledge, this execution model has no name in the
literature; we refer to it as deferred execution.

For contrast, consider how this example would be exe-
cuted by an implicit runtime. First A would be spawned



asynchronously. Next, the asynchronous copy from a to b
would block pending the availability of a. Up to this point,
the two models are the same: A is running and the copy
is waiting on the completion of A. However, in standard
asynchronous execution the client makes no further progress
because it has the responsibility of waiting until it is safe to
issue the copy. In deferred execution, this responsibility is
delegated to the runtime, and the client can immediately
continue with the spawn of B, even if the data in a is not
yet ready. Deferred execution allows the client to continue
to build the explicit graph, enabling the runtime to discover
and construct the graph for the independent chain of oper-
ations C and D while A is executing. Furthermore, once
processor p1 is available after executing A, the two chains
of operations can execute in parallel. A similar effect can
be achieved in implicit systems by hoisting C and D above
B, but this solution places the burden for scheduling on the
programmer (recall Section 2).

A key to enabling deferred execution in Realm is making
events inexpensive. With the client able to issue operations
far ahead of the actual execution, a large number of events
are needed to track the dependences between operations.
As we show in Section 9, Realm clients can generate tens
of thousands of unique events per second per node during
execution. In Section 5, we describe the implementation of
generational events that are crucial to making events cheap
and deferred execution practical.

Realm’s novel operations are integrated into the deferred
execution model as well. For example, a reservation request
immediately returns an event that triggers when the reser-
vation is granted. In this way, reservations are a deferred ex-
ecution version of locks that do not block and allow another
operation’s execution to be dependent on the reservation’s
acquisition. Similarly, Realm’s data movement operations
are deferred. Realm’s support for novel bulk reductions al-
lows clients to construct sophisticated asynchronous reduc-
tion trees that match the shape of the machine’s memory
hierarchy. We illustrate a real-world application that lever-
ages this feature in Section 9.

4. REALM INTERFACE
Realm is a low-level runtime, providing a small set of

primitives for performing computations on heterogeneous,
distributed memory machines. The focus is on providing
the necessary mechanisms, while leaving the policy decisions
(e.g. which processor to run a task on, what copies to per-
form) under the complete control of the client. While that
client may be a programmer coding directly to the Realm
interface, the expected usage model for Realm is as a target
for higher-level languages and runtimes.

The Realm interface is shown in Figure 1. Except for the
static singleton machine object, object instances are light-
weight handles that uniquely name the underlying object.
Every handle is valid everywhere in the system, allowing
handles to be freely copied, passed as arguments, and stored
in the heap. For performance, Realm does not track where
handles propagate. In the case of events, this creates an
interesting problem of knowing when it is safe to reclaim
resources associated with events (see Section 5).

In the rest of this section we explain Realm processor and
machine objects. In subsequent sections we present Realm’s
events, reservations, and physical regions.

1 class Event {
2 const unsigned id, gen;
3 static const Event NO EVENT;
4

5 bool has triggered() const;
6 void wait() const;
7 static Event merge events(const set〈Event〉 &to merge);
8 };
9

10 class UserEvent : public Event {
11 static UserEvent create user event();
12 void trigger(Event wait on = NO EVENT) const;
13 };

14 class Processor {
15 const unsigned id;
16 typedef unsigned TaskFuncID;
17 typedef void (∗TaskFuncPtr)(void ∗args,size t arglen,Processor p);
18 typedef map〈TaskFuncID, TaskFuncPtr〉 TaskIDTable;
19

20 enum Kind { CPU PROC,GPU PROC /∗ ... ∗/ };
21 Kind kind() const;
22

23 Event spawn(TaskFuncID func id,const void ∗args,size t arglen,
24 Event wait on) const;
25 };

26 class Reservation {
27 const unsigned id;
28 Event acquire(Event wait on = NO EVENT) const;
29 void release(Event wait on = NO EVENT) const;
30

31 static Reservation create reservation(size t payload size = 0);
32 void ∗payload ptr();
33 void destroy lock();
34 };

35 class Memory {
36 const unsigned id;
37 size t size() const;
38 };
39

40 class PhysicalRegion {
41 const unsigned id;
42 static const PhysicalRegion NO REGION;
43

44 static PhysicalRegion create region(size t num elmts, size t elmt size);
45 void destroy region() const;
46

47 ptr t alloc();
48 void free(ptr t p);
49

50 RegionInstance create instance(Memory memory) const;
51 RegionInstance create instance(Memory memory,
52 ReductionOpID redopid) const;
53 void destroy instance(RegionInstance instance,
54 Event wait on = NO EVENT) const;
55 };
56

57 class RegionInstance {
58 const unsigned id;
59

60 void ∗element data ptr(ptr t p);
61 Event copy to(RegionInstance target, Event wait on = NO EVENT);
62 Event reduce to(RegionInstance target, ReductionOpID redopid,
63 Event wait on = NO EVENT);
64 };

65 class Machine {
66 Machine(int ∗argc, char ∗∗∗argv,
67 const Processor::TaskIDTable &task table);
68

69 void run(Processor::TaskFuncID task id,
70 const void ∗args, size t arglen);
71

72 static Machine∗ get machine(void);
73 const set〈Memory〉& get all memories(void) const;
74 const set〈Processor〉& get all processors(void) const;
75

76 int get proc mem affinity(vector〈ProcMemAffinity〉 &result, ...);
77 int get mem mem affinity(vector〈MemMemAffinity〉 &result, ...);
78 };

Figure 1: Runtime Interface.



4.1 Processors
Lines 14-25 of Figure 1 show the interface for Processor

objects. Processors name every computational unit within
the machine. Processors have a kind, currently either CPU
or GPU (line 20). Exposing heterogeneous processor types
through a common interface allows the client to alter the
task mapping without having multiple code paths for launch-
ing tasks and keeps the Realm interface open to extension
for new processor kinds (e.g. FPGAs).

The spawn method (line 23) launches a new task on a
processor, adding a new node to Realm’s dynamic control
dependence graph. The spawn operation is invoked on a
processor handle, enabling a task on one processor to launch
another task on any other processor in the system. Spawn
takes an optional event that must trigger before the task be-
gins execution and returns a (fresh) event that triggers when
the task completes. For example, Figure 2 shows a portion
of a Realm event graph generated from a real client appli-
cation [6]. Tasks are rectangles in Figure 2. The right-hand
side of the graph shows the actual application-level tasks,
while the left-hand side shows mapping tasks launched by
the higher-level runtime to dynamically compute the place-
ment of the application tasks and data. In Figure 2, the
application-level tasks are launched on the GPU from the
mapping tasks running on a CPU. Dashed lines indicate that
one task is launched by another task.

4.2 Machine
Realm provides a singleton Machine object (lines 65-78

of Figure 1) that handles initialization and run-time intro-
spection of the hardware. The Machine object is created at
program start, providing a task table mapping task IDs to
function pointers, and then invokes the run method (line 69).
Any task can call the get_machine method (line 72) and use
it to obtain lists of all Memory (line 73) and Processor (line
74) handles. Using the affinity methods (lines 76-77), the
client can also determine which memories are accessible by
each processor and with what performance, as well as which
pairs of memories can support copy operations.

4.3 Implementation
Our implementation of Realm for heterogeneous clusters

of both CPUs and GPUs is built on Pthreads, CUDA for
GPUs[1], and the GASNet cluster API[41] for portability
across interconnect fabrics. The cluster is modeled as having
two kinds of processors (a CPU processor for each CPU core
and a GPU processor for each GPU, matching the scheduling
granularity of Pthreads and CUDA respectively) and four
kinds of memory (distributed GASNet memory accessible
by all nodes via RDMA operations, system memory on each
node, GPU device memory, and zero-copy memory, which
is a segment of system memory that has been mapped into
both the CPU and GPU’s address spaces). Internally, Realm
maintains a queue for each processor of tasks that are ready
to execute (i.e., those for which the precondition event has
triggered); when the processor becomes idle Realm executes
the next task in the queue.

Realm features requiring communication rely on GAS-
Net’s active messages, which consist of a command and pay-
load sent by one node to another. Upon arrival at a des-
tination node, a handler routine is invoked to process the
message[39].

acq r0 acq r0 acq r0

run
map(S1)

run
map(S2)

run
map(Sn−1)

rel r0 rel r0 rel r0

acq r0 acq r0 acq r0

run
map(T1)

run
map(T2)

run
map(Tn−1)

rel r0 rel r0 rel r0

acq r0 acq r0 acq r0

run
map(U1)

run
map(U2)

run
map(Un−1)

rel r0 rel r0 rel r0

run
S1(. . .)

run
S2(. . .)

run
Sn−1(. . .)

run
T1(. . .)

run
T2(. . .)

run
Tn−1(. . .)

reduce
t1 → G

reduce
t2 → G

reduce
tn−1 → G

copy
G → u1

copy
G → u2

copy
G → un−1

run
U1(. . .)

run
U2(. . .)

run
Un−1(. . .)

Figure 2: A Realm Event Graph

5. EVENTS
Events describe dependences between operations in Realm.

In Figure 2, events are solid black arrows between opera-
tions, indicating one operation must be performed before
another. Events express control dependences only—events
order operations but do not imply anything about data de-
pendences and do not involve data movement.

Lines 1-13 of Figure 1 show the event interface. An in-
stance of the Event type names a unique event in the sys-
tem. NO_EVENT (line 3) is a special instance that by definition
has always triggered. The event interface supports testing
whether an event has triggered (line 5) and waiting on an
event to trigger (line 6), but the preferred use of events is
passing them as preconditions to other operations. If an
operation has more than one precondition, those events are
merged into an aggregate event with the merge_events call
(line 7). The aggregate event does not trigger until all of
the constituent events have triggered. In most cases, events
are created as the result of other Realm calls, and the imple-
mentation is responsible for triggering these events. How-
ever, clients can also create a UserEvent (line 10) that is
triggered explicitly by the client.

5.1 Event Implementation
Events are created on demand and are owned by the cre-

ating node. The Event type is a light-weight handle. The
space of event handles is divided statically across the nodes
by including the owner node’s ID in the upper bits of the
event handle. This allows each node to assign handles to new
events without conflicting with another node’s assignments
and without inter-node communication. The inclusion of the
node ID in event handles also permits any node to determine
an event’s owning node without communication.

When a new event e is created, the owning node o allocates
a data structure to track e’s state (triggered or untriggered)
and e’s local list of waiters: dependent operations (e.g., copy
operations and task launches) on node o. The first reference
to e by a remote node n allocates the same data structure
on n. An event subscription active message is then sent to
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Figure 3: Generational Event Timelines

node o indicating node n should be informed when e triggers.
Any additional dependent operations on node n are added to
n’s local list of e’s waiters without further communication.
When e triggers, the owner node o notifies all local waiters
and sends an event trigger message to each subscribed node.
If the owner node o receives a subscription message after e
triggers, o immediately responds with a trigger message.

The triggering of an event may occur on any node. When
it occurs on a node t other than the owner o, a trigger mes-
sage is sent from t to o, which forwards that message to all
other subscribed nodes. The triggering node t notifies its
local waiters immediately; no message is sent from o back
to t. While a remote event trigger results in the latency of a
triggering operation being at least two active message flight
times, it bounds the number of active messages required per
event trigger to 2N−2 where N is the number of nodes mon-
itoring the event (which is generally a small fraction of the
total number of machine nodes). An alternative is to share
the subscriber list so that the triggering node can notify
all interested nodes directly. However, such an algorithm is
both more complicated (due to race conditions) and requires
O(N2) active messages. Any algorithm super-linear in the
number of nodes in the system will not scale well, and as
we show in Section 8.1, the latency of a single event trigger
active message is very small.

5.2 Generational Events
There are several constraints on the lifetime of the data

structure used to represent an event e. Creation and trig-
gering of e can each happen only once, but any number of
operations may depend on e. Furthermore, some operations
depending on e may not even be requested until long af-
ter e has triggered. Therefore, the data structure used to
represent e cannot be freed until all these operations de-
pending on e have been registered. Some systems ask the
programmer to explicitly create and destroy events[5], but
this is problematic when most events are created by Realm
rather than the programmer. Other systems address this
issue by reference counting event events[30], but reference
counting adds client and runtime overhead even on a single

node, and incurs even greater cost in a distributed memory
implementation.

Instead of freeing event data structures, our implemen-
tation aggressively recycles them. Compared to reference
counting, our implementation requires fewer total event data
structures and has no client or runtime overhead. The key
observation is that one generational event data structure can
represent one untriggered event and a large number (e.g.,
232 − 1) of already-triggered events. We extend each event
handle to include a generation number and the identifier for
its generational event. Each generational event records how
many generations have already triggered. A generational
event can be reused for a new generation as soon as the
current generation triggers. (Any new operation dependent
on a previous generation can immediately be executed.) To
create a new event, a node finds a generational event in the
triggered state (or creates one if all existing generational
events owned by the node are in the untriggered state),
increases the generation by one, and sets the generational
event’s state to untriggered. As before, this can be done
with no inter-node communication.

An example of how multiple events can be represented by
a single generational event is shown in Figure 3. Timelines
for events x, y, and z indicate where creation (C), triggering
(T) and queries (Q) occur. Queries that succeed (i.e. the
event has triggered) are shown with solid arrows, while those
that fail are dotted. The lifetime of an event extends from its
creation until the last operation (trigger or query) performed
on it. Although the lifetime of event x overlaps with those of
y and z, the untriggered intervals are non-overlapping, and
all three can be mapped on to generational event w, with
event x being assigned generation 1, y being assigned 2, and
z being assigned 3. A query on the generational event suc-
ceeds if the generational event is either in the triggered state
or has a current generation larger than the one associated
with the query.

Nodes maintain generational event data structures for both
events they own as well as remote events that they have ob-
served. Remote generational event data structures record
the most recent generation known to have triggered as well
as the generation of the most recent subscription message
sent (if any). Remote generational events enable an inter-
esting optimization. If a remote generational event receives
a query on a later generation than its current generation,
it can infer that all generations up to the requested gener-
ation have triggered, because the new generation(s) of the
event were able to be created by the event’s owner. All local
waiters for earlier generations can be notified even before re-
ceiving the event trigger message for the current generation.

In Section 8 we show that the latency of event triggering
is very low, even in the case of dense, distributed graphs of
dependent operations. In Section 9 we show that our gener-
ational event implementation results in a large reduction in
space requirements to record events for real applications.

6. Reservations
Recall that the tasks on the right of Figure 2 are the actual

application-level tasks and that the mapping tasks on the
left dynamically compute where the application-level tasks
should run. The higher-level runtime’s mapping tasks may
be run in any order, but each requires exclusive access to
a shared data structure. In most systems, locks are used
for atomic data access. However, standard locking primi-



tives do not integrate well with deferred execution, as the
requestor must wait (or constantly poll) for the lock to be
granted. Reservations are a new synchronization mechanism
that serve the purpose of locks in Realm’s dynamically gen-
erated control dependence graph of deferred operations.

Reservations (lines 26-34 of Figure 1) are requested using
the acquire method. Rather than waiting when the reser-
vation is held (or returning a “retry” response), the request
returns immediately with an event that will trigger when the
reservation is eventually granted. Reservations are released
with the release method. As with other Realm operations,
the acquire and release methods accept an event param-
eter as a precondition (lines 28-29). A chain of event de-
pendences should always exist between paired acquire and
release invocations.

Another important difference between reservations and
locks is that the processor requesting the reservation need
not be the one that uses it. A common Realm idiom is to
acquire a reservation on behalf of a task being launched.
For example, in Figure 2, acquire requests (acq diamonds)
are made for the reservation protecting the higher-level run-
time’s meta-data. The event returned by these requests then
becomes the precondition for launching the mapping tasks,
which actually use the meta-data. The reservation releases
(rel diamonds) are made before the mapping tasks even
run, but are conditioned on the completion of the mapping
tasks. Dotted arrows between acquire and release nodes
indicate one possible execution order of reservation grants
and requests. Note that completion events for mapping calls
are made preconditions for later reservation requests. This
prevents acquire requests from later mapping tasks from be-
ing processed before other preconditions have been satisfied,
which could lead to deadlock. Preconditions on reservation
acquires also allow the acquisition of multiple reservations
to follow a specific order, analogous to the standard tech-
nique for avoiding deadlock when requesting multiple locks
simultaneously.

Often reservations are used to guard small allocations of
data. To improve support for this idiom in a distributed
environment, we allow a small (less than 4KB) payload of
data to be associated with a reservation. The payload is
guaranteed to be coherent while the reservation is held. The
payload size is specified when the reservation is created (line
31) and a pointer to the local copy of the payload is obtained
from the payload_ptr method (line 32).

Events and reservations give Realm expressiveness equiv-
alent to the interfaces of implicit representation systems for
ordering and serialization. Realm also makes these opera-
tions deferred and composable, neither of which is possible
in other runtime interfaces.

6.1 Reservation Implementation
Like events, reservations are created on demand, using a

space of handles statically divided across the nodes. Reser-
vation creation requires no communication and the handle is
sufficient to determine the creating node. However, whereas
event ownership is static, reservation ownership may mi-
grate; the creating node is the initial owner, but ownership
can be transferred to other nodes. Since any node may at
some point own a reservation r, all nodes use the same data
structure with the following fields to track the state of r:

• owner node - the most recently known owner of r. If
the current node is the owner, this information is cor-

rect. If not, this information may be stale, but the
recorded node will have more recent information about
the true owner and will forward the request.

• reservation status - records whether r is currently held;
valid only on the current owner.

• local waiters - a list of pending local acquire requests.
This data is always valid on all nodes.

• remote waiters - a set of other nodes known to have
pending acquire requests; valid only on the current
owner.

• local payload pointer and size - a copy of r’s payload

Each time an acquire request is made, a new event is cre-
ated to track when the grant occurs. The current node then
examines its copy of the reservation data structure to de-
termine if it is the owner. If the current node is the owner
and the reservation isn’t held, the acquire request is granted
immediately and the event is triggered. If the reservation is
held, the event is added to the list of local waiters. Note that
the event associated with the acquire request is the only data
that must be stored. If the current node isn’t the owner, a
reservation acquire active message is sent to the most re-
cently known owner. If the receiver of an acquire request
message is no longer the owner, it forwards the message on
to the node it has recorded as the owner. If the current
owner’s status shows the reservation is currently held, the
requesting node’s ID is added to the remote waiters set. If
the reservation is not held, the ownership of the reservation
is given to the requesting node via a reservation transfer
active message, which includes the set of remaining remote
waiters and an up-to-date copy of the reservation’s payload.

Similarly, a release request (once its preconditions have
been satisfied) is first checked against the local node’s reser-
vation state. If the local node is not the owner, a release
active message is sent to the most recently known owner,
which is forwarded if necessary. Once the release request is
on the reservation’s current owning node, the local waiter
list is examined. If the list is non-empty, the reservation
remains in the acquired state and the first acquire grant
event is pulled off the local waiter list and triggered. If the
local waiter list is empty, the acquire state is changed to
not-acquired, and the set of remote waiters is examined. If
there are remote waiters, one is chosen and the correspond-
ing node becomes the new owner via a reservation transfer.

The unfairness inherent in favoring local waiters over re-
mote waiters is intentional. When contention on a reserva-
tion is high (the only time fairness is relevant), the latency of
transferring a reservation between nodes can be the limiter
on throughput. Minimizing the number of reservation trans-
fers maximizes reservation throughput (see Section 8.2).

7. PHYSICAL REGIONS
Traditionally, most interfaces for data movement in dis-

tributed memory architectures only support copies of un-
typed buffers (e.g. MPI send operations). However, it is
often useful to associate operations on data, such as reduc-
tions, in conjunction with data movement. Performing bulk
data movement and reductions simultaneously can signifi-
cantly reduce their cost compared to performing the oper-
ations separately. To support bulk reductions, where each
element of a collection is the result of a reduction, Realm
needs to know the type (or at least the size) of the elements
in the collections involved. Realm relies on a system of typed



physical regions to manage the layout and movement of data
in a deferred execution model.

A physical region defines an addressing scheme for a col-
lection of elements of a common type. To a first approx-
imation, physical regions of elements of type T are arrays
of T with additional metadata to support efficient copies,
reductions, and allocation/deallocation of elements within
the region. Realm supports creating multiple instances of a
physical region in different memories for replication or data
migration. Because all instances of a physical region r use
the same addressing scheme, Realm has sufficient informa-
tion to perform deferred copies between instances of r.

Lines 35-64 of Figure 1 show a subset of the interface for
physical regions (we omit portions of the interface due to
space constraints). Each physical memory is named by a
Memory object (line 35). Physical region objects are con-
structed by defining the maximum number and size of ele-
ments (line 44). Physical region instances are created in a
specific Memory (line 50). To maintain performance trans-
parency, there is no virtualization of memory—each Memory

is sized based on a physical capacity and a new instance can
be allocated only if sufficient space remains. Instances must
be explicitly destroyed, which can be contingent on an event
(lines 53-54).

Elements can be dynamically allocated or freed within
a physical region (lines 47-48). Elements are accessed by
Realm pointers of type ptr_t. By definition, a Realm pointer
into physical region r is valid for every instance of r regard-
less of its memory location (line 60). This allows Realm
pointers to be stored in data structures and reused later,
even if instances have been moved around. In common cases,
pointer indexing reduces to inexpensive array address calcu-
lations which are compiled to individual loads and stores.

Realm supports copy operations between instances of the
same physical region (line 61). Copy operations in Figure 2
are rhomboids marked copy. Like all other Realm opera-
tions, copy requests accept an event precondition and return
an event that triggers upon completion of the copy. Realm
does not guarantee the coherence of data between differ-
ent instances; coherence must be explicitly managed by the
client via copy operations.

7.1 Reduction Instances
If a task only performs reductions on an instance, a spe-

cial reduction-only instance may be created (lines 51-52).
In Figure 2, each task Ti is mapped to use reduction-only
instance ti to accumulate reductions in the GPU zero-copy
memory. Using the reduce_to method (lines 62-63), these
reduction buffers are eventually applied to a normal instance
residing in GASNet memory. We detail this pattern in a
real-world application in Section 9. Bulk reduction opera-
tions are rhomboids marked reduce in Figure 2.

Reduction-only instances differ in two important ways from
normal instances. First, the per-element storage in reduction-
only instances is sized to hold the “right-hand side” of the
reduction operation (e.g., the v in struct.field += v). Sec-
ond, individual reductions are accumulated (atomically) into
the local reduction instance, which can then be sent as a
batched reduction to a remote target instance. When multi-
ple reductions are made to the same element, they are folded
locally, further reducing communication. The fold operation
is not always identical to the reduction operation. For ex-
ample, if the reduction is exponentiation, the corresponding

Nodes 1 2 4 8 16
Mean Trigger
Time (µs)

0.329 3.259 3.799 3.862 4.013

Figure 4: Event Latency Results.

fold is multiplication:

(r[i] **= a) **= b ⇔ r[i] **= (a ∗ b)

The client registers reduction and fold operations at system
startup (omitted from Figure 1 due to space constraints).
Reduction instances can also be folded into other reduction
instances to build hierarchical bulk reductions matching the
memory hierarchy.

Realm supports two classes of reduction-only instances.
A reduction fold instance is similar to a normal physical re-
gion in that it is implemented as an array indexed by the
same element indices. The difference is that each instance
element is a value of the reduction’s right-hand-side type,
which is often smaller than the region’s element type (the
left-hand-side type). A reduction operation simply folds the
supplied right-hand-side value into the corresponding array
location. When the reduction fold instance p is reduced to
a normal instance r, first p is copied to r’s location, where
Realm automatically applies p to r by invoking the reduc-
tion function once per location via a cache-friendly linear
sweep over the memory.

The second kind of reduction instance is a reduction list in-
stance, where the instance is implemented as a list of reduc-
tions. A reduction list instance logs every reduction opera-
tion (the pointer location and right-hand-side value). When
the reduction list instance p is reduced to a normal physi-
cal region r, p is transferred and replayed at r’s location. In
cases where the list of reductions is smaller than the number
of elements in r the reduction in data transferred can yield
better performance (see Section 8.3).

8. MICROBENCHMARKS
We evaluate our Realm implementation using microbench-

marks that test whether performance approaches the ca-
pacity of the underlying hardware. All experiments were
run on the Keeneland supercomputer[38]. Each Keeneland
KIDS node is composed of two Xeon 5660 CPUs, three Tesla
M2090 GPUs, and 24 GB of DRAM. Nodes are connected
by an Infiniband QDR interconnect.

8.1 Event Latency and Trigger Rates
We use two microbenchmarks to evaluate event perfor-

mance. The first tests event triggering latency, both within
and between nodes. Processors are organized in a ring and
each processor creates a user event dependent on the previ-
ous processor’s event. The first event in the chain of depen-
dent events is triggered and the time until the triggering of
the chain’s last event is measured; dividing the total time
by the number of events in the chain yields the mean trig-
ger time. In the single-node case, all events are local to
that node, so no active messages are required. For all other
cases, the ring uses a single processor per node so that every
trigger requires the transmission (and reception) of an event
trigger active message.

Table 4 shows the mean trigger times. The cost of manipu-
lating the data structures and running dependent operations
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Figure 5: Microbenchmark Results.

is shown by the single-node case, which had an average la-
tency of only 329 nanoseconds. The addition of nearly 3 mi-
croseconds when going from one node to two is attributable
to the latency of a GASNet active message; others have mea-
sured similar latencies[7]. The gradual increase in latency
with increasing node count is likely related to the point-to-
point nature of Infiniband communication, which requires
GASNet to poll a separate connection for every other node.

Our second microbenchmark measures the maximum rate
at which events can be triggered by our implementation.
Instead of a single chain, a parameterized number (the fan-
in/out factor) of parallel chains are created. The event at
step i+ 1 of a chain depends on the ith event of every other
chain. The events within each step of the chains are dis-
tributed across the nodes. Recall from Section 5 that the
aggregation of event subscriptions limits the number of event
trigger active messages to one per node (per event trigger)
even when the fan-in/out factor exceeds the node count.

Figure 5a shows the event trigger rates for a variety of
node counts and fan-in/out factors. For small fan-in/out
factors, the total rate falls off initially going to two nodes
as active messages become necessary, but increases slightly
again at larger node counts. Higher fan-in/out factors re-
quire more messages and have lower throughput that also
increases with node count. Although the number of events
waiting on each node decreases with increasing node count,
the minimal scaling indicates the bottleneck is in the pro-
cessing of the active message each node must receive rather
than the local redistribution of the triggering notification.

The compute-bound nature of the benchmark shows that
active messages do not tax the network and leave bandwidth
for application data movement. The event trigger rates in
this microbenchmark are one to two orders of magnitude
larger than the trigger rates required by the real applications
described in Section 9.

8.2 Reservation Acquire Rates
The reservation microbenchmark measures the rate at which

reservation acquire requests can be granted. A parameter-
ized number of reservations are created per node and their
handles are made available to every node. Each node then
creates a parameterized number of chains of acquire/release
request pairs, where each request attempts to acquire a ran-
dom reservation and is made dependent on the previous
acquisition in the chain. Thus the total number of chains
across all nodes gives the total number of acquire requests

that can exist in the system at any given time. All chains are
started at the same time and the time to process all chains
is divided into the total number of acquire requests to yield
an average reservation grant rate.

Figure 5b shows the reservation grant rate for a variety
of node counts and reservations per node. The number
of chains per node is varied so that the total number of
chains in the system is 1024 in all cases. For the single-
node cases, the insensitivity to the number of reservations
indicates that the bottleneck is in the computational ability
of the node to process the requests. For larger numbers of
nodes, especially for the larger numbers of reservations per
node (where contention for any given reservation is low),
the speedup with increasing node count suggests the lim-
iting factor is the rate at which reservation-related active
messages can be sent (nearly every request will require a
transfer of ownership). In nearly all cases, the performance
actually increases with decreasing number of reservations.
Although contention increases, favoring local reservation re-
questors makes contention an advantage, reducing the num-
ber of reservation-related active messages that must be sent
per reservation grant.

The benefit of reservation unfairness is more clearly shown
in Figure 5c. Here the node count is fixed at 8 and reserva-
tion grant rates are shown for a variety of total reservation
counts and number of chains per node. At 32 chains per
node (256 chains total) contention is low and the grant rate
is high. As the number of chains per node increases there is
more contention for reservations and the grant rate drops.
For smaller reservation counts, further increases in the num-
ber of chains results in improved grant rates. On each line
the increase occurs when the chains per node exceeds the
total number of reservations, which is where the expected
number of requests per reservation per node exceeds one.
As soon as there are multiple requestors for the same reser-
vation on a node, the unfairness of reservations reduces the
number of reservation ownership transfers, yielding better
performance.

8.3 Reduction Throughput
To evaluate reduction instances we use a histogram mi-

crobenchmark where all nodes perform an addition reduc-
tion to a physical region in the globally visible GASNet
memory. Using the reduction interface (Section 7) reduc-
tions are performed in five ways:
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Figure 6: Performance of Reductions and Events.

• Single Reads/Writes - Each node acquires a reservation
on the global physical region and for each reduction
reads a value from the region, performs the addition,
and writes the result back. The reservation is released
after all reductions are performed.

• Single Reductions - Each reduction is individually sent
as an active message to the node whose system memory
holds the target of the reduction.

• Localized Instance - Each node takes a reservation on
the global physical region, copies it to a new instance
in its own system memory, performs all reductions to
the local region, copies the region back, and releases
the reservation.

• Fold Instance - Each node creates a local fold reduction
instance. All reductions are folded into the instance,
which is then copied and applied to the global region.

• List Instance - Each node creates a local list reduction
instance. Reductions are added to the list reduction
instance, which is then copied and applied to the global
region.

We ran two experiments, one with dense reductions and
one with sparse reductions. In both cases a large random
source of data is divided into chunks, which are given to
separate reduction tasks. Eight reduction tasks are created
for each node, one per processor. The dense case uses a his-
togram with 256K buckets and each reduction task performs
4M reductions (Figure 6a). The sparse case uses a histogram
with 4M buckets, but only 64K reductions are performed by
each task (Figure 6b).

In the dense experiment, the reduction fold instances per-
form best and scale well with the number of nodes, achiev-
ing over a billion reductions per second in the 16 node case.
List instances also scale well, but perform about an order of
magnitude worse than fold instances in the dense case. The
use of a separate active message for each reduction opera-
tion is another two orders of magnitude worse—data must
be transferred in larger blocks to be efficient. The localized
instance approach works well for a single node, but its serial
nature doesn’t benefit from increasing node counts. Finally,
the only time the latency of performing individual RDMA
reads and writes isn’t disastrous is on a single node, where
the reads and writes are all local.

The sparse case is similar, except the reduction fold case
suffers from the overhead of transferring a value for every
bucket even though most buckets are unmodified. The re-

duction list case continues to scale well, surpassing the re-
duction fold performance at larger node counts and showing
that list instances are better suited for scaling sparse reduc-
tion computations.

9. APPLICATION EVALUATION
To quantify the performance of our Realm implementa-

tion real-world applications we target an existing high-level
runtime system[6] to the Realm interface. We use the same
three applications as [6] and profile several aspects of per-
formance. We first look at the use of Realm events by the
applications in Section 9.1. Section 9.2 covers the use of
reservations. Finally, in Section 9.3 we estimate the per-
formance benefits conferred by Realm relative to implicit
representation systems.

All three applications we investigate are multi-phase and
require parallel computation, data exchange, and synchro-
nization between phases. Circuit is an electrical circuit sim-
ulation. The circuit is represented as an irregular graph
where the edges are wires and nodes are where wires meet.
The graph is dynamically partitioned into pieces that are
distributed around the machine and the simulation is run
for many time steps, each of which involves three distinct
phases with a variety of access patterns. Figure 7 (repro-
duced from [6]) shows the placement of physical regions for
storing node and wire data in different machine memories
for one time step. Wire and private nodes for each piece can
remain in device memory for each GPU. Physical regions for
shared and ghost node data are placed in zero-copy memory
to facilitate direct data movement to/from GASNet memory.
Reduction instances in zero-copy memory buffer reductions
from the Distribute Charge task running on the GPU be-
fore they are folded back to GASNet memory using a bulk
reduction. The Realm event graph in Figure 2 directly cor-
responds to the operations shown in Figure 7.

Fluid is a distributed memory port of the PARSEC flu-
idanimate benchmark[8], which models fluid flow as particles
moving through a volume divided into cells. Each time step
involves multiple phases, each updating different properties
of the particles based on neighboring particles. The space of
cells is partitioned and neighboring cells in different parti-
tions must exchange data between phases. These exchanges
are done point-to-point by chaining copies and tasks using
events rather than employing a global bulk-synchronous ap-
proach to exchange neighboring particle information.
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AMR is an adaptive mesh refinement benchmark based
on the third heat equation example from the Berkeley Labs
BoxLib project[32]. AMR simulates the two dimensional
heat diffusion equation using three different levels of re-
finement. Each level is partitioned and distributed across
the machine. Time steps require both intra- and inter-level
communication and synchronization. Dependences between
tasks from the same and different levels are again expressed
through events.

9.1 Event Lifetimes
To illustrate the need for generational events data struc-

tures, we instrumented Realm to capture information about
the lifetime of events. The usage of events by all three ap-
plications was similar, so we present representative results
from just one. Figure 6c shows a timeline of the execution
of the Fluid application on 16 nodes using 128 cores. The
dynamic events line measures the total number of event cre-
ations. A large number of events are created—over 260,000
in less than 20 seconds of execution—and allocating sep-
arate storage for every event would clearly be difficult for
long-running applications.

An event is live until its last operation (e.g., query, trig-
ger) is performed. After an event’s last operation a reference
counting implementation would recover the event’s associ-
ated storage. The live events line in Figure 6c is therefore the
number of needed events in a reference counting scheme. In
this example, reference counting reduces the storage needed
for dynamic events by over 10X, but with the additional
overhead associated with reference counting. This line also
gives a lower bound for the number of events when the appli-
cation performs explicit creation and destruction of events.

As discussed in Section 5.2, our implementation requires
storage that grows with the maximum number of untriggered
events, a number that is 10X smaller than even the maxi-
mal live event count. The actual storage requirements of our
Realm implementation are shown by the generational events
line, which shows the total number of generational events in
the system. The maximum number of generational events
needed is slightly larger than the peak number of untrig-
gered events because nodes must create a new event locally
if they have no available (i.e. triggered) generational events,
even if there are available generational events on remote
nodes. Overall, our implementation uses 5X less storage
than a reference counting implementation and avoids any
related overhead. These savings would likely be even more
dramatic for longer runs of the application, as the number of

live events is steadily growing as the application runs, while
the peak number of generational events needed appears to
occur during the start-up of the application. Overall this
demonstrates the ability of generational events to represent
large numbers of live events with minimal storage overhead.

9.2 Reservation Performance
The Circuit and AMR applications both made use of reser-

vations, creating 3336 and 1393 reservations respectively. Of
all created reservations in both applications, 14% were mi-
grated at least once between nodes. The grant rates for both
applications are orders of magnitude smaller than the maxi-
mum reservation grant rates achieved by our reservation mi-
crobenchmarks in Section 8.2. Thus, for these benchmarks
reservations were needed to express non-blocking synchro-
nization and were far from being a performance limiter.

9.3 Comparison with Implicit Representations
We now attempt to estimate the performance gains at-

tributable to the latency hiding provided by deferred execu-
tion. To compare with a standard implicit implementation,
we modified each Realm application to wait for events in
the application code immediately before the dependent op-
eration rather than supplying them as preconditions. While
this methodology has the disadvantage that our approxima-
tion of an implicit runtime may not be as fast as a purpose-
built one, it has the great advantage of controlling for the
myriad possible performance effects in comparing two com-
pletely different implementations: any performance differ-
ences will be due exactly to the more relaxed execution or-
dering enabled by deferred execution.

Figure 8a shows three curves for the AMR application:
the original Realm version, the implicit version, and an inde-
pendently written and optimized MPI implementation [32].
Observe that the implicit version is competitive with the in-
dependent MPI code, which is some evidence that using the
implicit version as a reference point is reasonable. Both the
Realm and implicit versions start out ahead of MPI due to
better mapping decisions provided by the higher-level run-
time[6]. The Realm implementation of AMR uses a simple
all-to-all pattern for its communication. The additional la-
tency inherent in this pattern is hidden well by the deferred
execution model, but is a bottleneck for the implicit ver-
sion, resulting in up to 102% slowdown at 16 nodes. The
MPI version continues to scale by using much more compli-
cated asynchronous communication patterns, but the need
for blocking synchronization primitives still results in ex-
posed communication latency, causing a 66% slowdown rel-
ative to Realm on 16 nodes.

It is worth emphasizing that in principle the MPI code can
be just as fast as (or faster than) Realm—there is nothing
in Realm that a programmer cannot emulate with sufficient
effort using the primitives available in any implicit runtime
system. However, as discussed in Section 2, this program-
ming work is substantial, difficult to maintain, and often
machine specific; it is our experience that few programmers
undertake it.

Figures 8b and 8c show performance results for the Circuit
and Fluid applications respectively; for these applications
we do not have independently optimized distributed mem-
ory implementations and so we compare only the Realm and
implicit implementations. Each plot contains performance
curves for both implementations on two different problem
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Figure 8: Comparisons with a Generic Implicit System.

sizes. Circuit is compute-bound and the implicit imple-
mentation performs reasonably well. By 16 nodes, how-
ever, the overhead grows to 19% and 22% on the small
and large inputs respectively. Fluid has a more evenly bal-
anced computation-to-communication ratio and suffers more
by switching to the implicit model. At 16 nodes, perfor-
mance is 135% and 52% worse than the deferred execution
implementations on the small and large problem sizes re-
spectively. Ultimately the input problem size for the fluid
application is too small to strong scale beyond 16 nodes as
the computation-to-communication ratio approaches unity.

10. DISCUSSION AND CONCLUSION
Modern supercomputers bear little resemblance to their

predecessors. Current machines are composed of heteroge-
neous processors and dynamic networks. As these machines
continue to scale, the latencies associated with communica-
tion, data movement, and computation will both grow and
become increasingly volatile[35]. Under these circumstances,
implicit representation systems that place the burden of hid-
ing latencies on the programmer, such as MPI, will no longer
be practical.

Dealing with the growing and variable latencies of future
hardware will require dynamic explicit representation pro-
gramming systems. Dynamic explicit programming systems
are aware of program operations and their control depen-
dences. Consequently they can dynamically react to laten-
cies at runtime and discover schedules that are impractical
for human programmers to specify. The crucial component
for a dynamic explicit system is a deferred execution model.
Deferred execution allows explicit representation systems
such as Realm to discover as much parallelism as possible,
enabling them to automatically hide long latency operations
by overlapping them with additional work. Furthermore,
deferred execution allows dynamic explicit systems to hide
the latency of constructing the graph of operations and per-
forming scheduling at runtime. As distributed architectures
become increasingly prevalent, we believe that explicit rep-
resentation systems with deferred execution models, such as
Realm, will be essential for achieving high performance and
fully leveraging the underlying hardware.

To the best of our knowledge Realm constitutes the first
low-level runtime system that implements a fully deferred
execution model with primitives for deferring computation,
data movement, and synchronization. Events are the mecha-

nism for composing operations allowing Realm clients to ex-
ecute without blocking. Generational event data structures
make handling the large number of events created during
real application executions tractable. Reservations provide
a novel primitive for performing synchronization in a de-
ferred execution model. Support for composing data move-
ment with computations like reductions is achieved through
physical regions with different layouts such as reduction in-
stances. All of these components are essential for an expres-
sive programming system capable of high performance.

Going forward, we expect Realm to provide a useful foun-
dation for the construction of higher-level programming sys-
tems such as Legion[6]. The simple primitives of the Realm
API are expressive, but also capable of abstracting many
different hardware architectures. Combined with the auto-
matic latency hiding of a Realm implementation, the Realm
API provides a natural layer of abstraction for the develop-
ment of portable higher-level systems targeting both current
and future architectures.

We have presented Realm, a dynamic explicit low-level
runtime system based on a deferred execution model. We
have described the interesting aspects of our Realm imple-
mentation, specifically the use of generational event data
structures, our implementation of reservations, and the use
of reduction physical instances. Using microbenchmarks we
demonstrated that our Realm implementation approaches
the fundamental performance limits of the underlying hard-
ware. We also showed that our Realm implementation im-
proved the performance of three real-world applications up
to 135% over implicit representation programming systems.
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