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Abstract—The push towards exascale computing has sparked
a new set of explorations for providing new productive pro-
gramming environments. While many efforts are focusing on
the design and development of domain-specific languages (DSLs),
few have addressed the need for providing a fully domain-aware
toolchain. Without such domain awareness critical features for
achieving acceptance and adoption, such as debugger support,
pose a long-term risk to the overall success of the DSL approach.
In this paper we explore the use of language extensions to
design and implement the Scout DSL and a supporting toolchain
infrastructure. We highlight how language features and the
software design methodologies used within the toolchain play
a significant role in providing a suitable environment for DSL
development.
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I. INTRODUCTION

The challenges of productively programming the exascale
generation of high-performance computing systems has led
to a groundswell of research activities in new programming
models, languages, and supporting runtime systems. Successful
solutions will be required to effectively exploit various hard-
ware developments including increasing chip-level parallelism,
higher levels of available concurrency, heterogeneous chip
and architecture designs, and increasingly complex memory
hierarchies. The taxonomy of solutions to these technical
challenges is often presented as a dichotomy: namely, as
evolutionary or revolutionary approaches [1]. The evolutionary
path favors leaving today’s applications relatively untouched
while modifying the underlying infrastructure to address the
challenges. In contrast, the revolutionary path assumes the free-
dom to develop new, potentially radically different approaches
that primarily seek to improve a combination of developer
productivity, application performance, and portability. These
two categories represent diametrically opposing viewpoints
that, not surprisingly, highlight choices that must be made
and challenges that must be overcome to leverage existing
infrastructure investments for high-performance software and
forge techniques to develop future software.

In this paper we focus on the role that domain-specific
languages (DSLs) and their supporting infrastructures play
within this taxonomy. Specifically, we describe our approach
to designing and creating a proof-of-concept implementation
of the Scout DSL and a supporting domain-aware toolchain
that seeks to reduce the risks associated with adopting a
revolutionary approach. Our approach aims to build a DSL

in such a way that we can maintain the benefits of a general-
purpose toolchain but also maintain a domain awareness within
the entire toolchain. Scout is a strict superset of the C and
C++ languages and extends the general-purpose toolchain
to maintain this domain context throughout the compilation
process. This step is critical to enable support for a produc-
tive and complete, domain-aware environment for developing,
debugging, and profiling applications.

A. Domain-Specific Languages

Although domain-specific languages have only recently
become popular in the high-performance computing (HPC)
research community, they have been a common part of com-
puting for decades [2]. A DSL is typically thought of as
a programming language of reduced expressiveness that is
targeted at developers in a specific, focused problem domain.
For the purposes of this paper we will use the common
distinction between stand-alone and embedded (or internal)
DSLs. A stand-alone DSL is implemented as an entirely
new language with custom syntax and a supporting parser,
interpreter or compiler, supporting runtime system, and ideally,
a debugger tailored to the DSL. In contrast, an embedded DSL
is directly implemented in the syntax of an existing language,
in which case the mechanisms of the host language (e.g. func-
tions, overloaded operators, metaprogramming, type system,
macros, etc.) are used to provide domain-centric functionality,
and to a limited extent special syntax. Outside of HPC this
technique has become increasingly common with the design,
implementation, and growing popularity of languages such as
Ruby, Groovy, and Scala [3] and has had a longer history in
languages such as Lisp [4], [5] and Haskell [6].

Why use a DSL rather than simply taking the approach
of combining a general-purpose language with an application-
centric library (e.g. API) to provide DSL-like functionalities?
At a high level, the use of domain-specific classes, methods,
and functions—in effect a library or libraries—would appear to
meet the same goals of abstraction, productivity, and portabil-
ity. This question has already been considered from seemingly
all angles and is well addressed in the literature. To quote
Mernik et al. [7],

1) Appropriate or established domain-specific notations are
usually beyond the limited user-definable operator nota-
tion offered by general-purpose languages. A DSL offers
appropriate domain-specific notations from the start.

2) Appropriate domain-specific constructs and abstractions
cannot always be mapped in a straightforward way to
functions or objects that can be put in a library. (Traversals



and error handling are cited as common examples [8],
[9].)

3) Use of a DSL offers possibilities for analysis, verification,
optimization, parallelization, and transformation in terms
of DSL constructs that would be much harder or unfeasi-
ble if a general-purpose language had been used because
the source code patterns involved are too complex or not
well defined.

In short, DSLs “offer domain-specificity in better ways” [7].
We add a fourth point:

4) Use of a DSL offers the possibility of debugging with ref-
erence to the DSL syntax and constructs. If thoughtfully
designed, the DSL constructs themselves can enhance,
rather than complicate, the overall debugging process.

As will be discussed, the way in which a DSL is implemented
critically affects the ability to debug programs written in it.

The many advantages of DSLs have led to increased
attention to the concept in the HPC-focused research com-
munity. In particular, because they are specialized they can
provide improved productivity, maintainability, and portabil-
ity [10], [11], as well as supporting validation and domain-
aware optimizations [12], [13], and thus improved reliability
and performance. These attributes could provide significant
advantages for addressing the challenges of programming
the next several generations of high-performance computing
systems. However, DSLs also have significant risks in terms
of the costs associated with their design, implementation,
maintenance/longevity, and developer education, all of which
can have significant implications for their successful adoption.

We seek to reduce some of the costs and risks of a
fully-custom stand-alone DSL by introducing domain-centric
conservative extensions [14] to the C and C++ programming
languages, thus allowing us to leverage an existing implemen-
tation infrastructure while retaining the benefits of a stand-
alone DSL and of a general-purpose programming language.
In particular, we focus on the capabilities this enables in terms
of providing a domain-aware software development toolchain.

B. Toolchain Support

Given the challenges and complexity of language and com-
piler design and implementation, stand-alone DSL activities
have rarely considered the challenges of supporting domain
awareness throughout the full toolchain (i.e., compiler, linker,
debugger, profiler, and interfaces to HPC-centric system soft-
ware and operating system features). In the HPC community
this is manifested by the common use of source-to-source code
generation or transformation in which the primary focus is
on reducing the complexity and overall costs of development
by leveraging an existing, unmodified toolchain. We posit that
this approach is valuable for exploration but in the long term is
likely to result in a lack of adoption. Specifically, we claim that
to maximize overall developer productivity the abstractions
provided by a DSL must persist throughout the toolchain,
particularly for optimization and debugging. Furthermore, and
most importantly, the loss of domain-specific knowledge is
inherent in source-to-source compilation techniques that (by
design) split the toolchain into disjoint infrastructures. In
addition to the loss of context, this disjoint nature can lead to

unexpected/undesirable results when the target compiler, lack-
ing knowledge of domain-specific semantics, cannot perform
otherwise even straightforward optimizations.

The design and modularity across the tools that make up the
toolchain have significant implications for both the flexibility
and extensibility that are needed for developing and supporting
a domain-specific infrastructure. These considerations played
a central role in our choice to use extensions to existing
languages. As such it has driven our exploration to adopt
the LLVM Compiler Infrastructure [15], [16]. We further
discuss the advantages and disadvantages of this choice in
Section III-B2. In addition, the higher levels of abstraction
in DSLs require considerations in terms of the toolchain’s
interface to the underlying system’s features and software
layers. In this paper these layers of the toolchain include the
DSL-specific supporting runtime environment.

C. Supporting Software Layers

Programming language implementations generally have
supporting software interposed between the nominal exe-
cutable (the compiled program) and underlying system-level
services (such as parallel I/O or communication facilities), the
operating system, or bare hardware. These may be ordinary
libraries, such as libc for the C language, or may be more
directly involved with the execution of programs, such as an
interpreter, garbage collector, or virtual machine. We refer to
these supporting software infrastructure components, individ-
ually or collectively, as run-time support, or just runtimes.

The highest-level abstractions supported by a domain-
specific language, combined with the complexities of a sup-
porting toolchain and the nuances of achieving high perfor-
mance on the underlying architecture, make the capabilities
and features of the runtime infrastructure of significant impor-
tance. In general this layer (or layers) must provide an abstract
model of computation that provides a performance portability
layer that is also a suitable target for effective and efficient
code generation. When combined together with the various
challenges posed by future HPC systems, these software layers
will play a critical role in the overall success of a DSL.

II. SCOUT LANGUAGE OVERVIEW

Scout, the domain-specific language used in our studies,
is based on a set of domain-centric extensions to the C/C++
family of languages. These extensions introduce higher-level
(more abstract) data structures and parallel constructs that
can be reasoned about during the compilation process (i.e.,
from the front-end to back-end stages) and within the overall
toolchain. In particular, we focus on supporting a debugging
infrastructure that both preserves the domain context used
in the source program and supports the use of the language
extensions to facilitate debugging. This section introduces the
basic syntax and semantics introduced by these extensions.

A. Scout Data Types

Scout supports a common paradigm in computational sci-
ence by implementing a class of mesh abstract data types as
fundamental (first-class) concrete data types. These mesh types
include the programmer-specified fields that are stored as data
at various locations in the topology of the mesh. For example,



% uniform mesh MyUniformMesh {
% // Define the fields stored on the mesh.
% ce l ls : float temperature;
% vert ices: float3 velocity;
% edges : float3 flux;
% };

uniform mesh MyUniformMesh {
// Define the fields stored on the mesh.
ce l ls : float pressure, temperature;
vert ices: float3 vorticity;
edges : float3 velocity;

};

cell centered fields (pressure,temperature)

vertex located fields (vorticity)

edge located fields (velocity)

cell
vertexedge

Fig. 1: The declaration of a mesh type and the locations of cell-,
vertex-, and edge-located field data. The graphic shows the location
of these fields in a two-dimensional instance of the mesh type.

the code snippet shown in Figure 1 declares a uniform mesh
with temperature and pressure stored at the cell centers,
vorticity stored as a three-component floating point vector
at the vertices, and velocity (also a three-component float
vector) stored at the edges of the mesh. For clarity, Figure 1
also gives a pictorial representation of the field locations in
a mesh instance. This generalizes to three-dimensional mesh
constructs by introducing faces as a fourth field storage
location in the mesh declaration.

It is important to note that this construct only declares
the mesh type, including the fields of the mesh; it does not
define an actual instance of the mesh. Unlike structures in
C/C++ the programmer may make no assumptions about how
the fields of a mesh will eventually be laid out in memory,
or even what memories it might occupy (e.g., CPU, GPU, or
distributed memory). To avoid overly complicated data layout
decisions and code analysis issues related to aliasing, C-style
pointers are not presently allowed within the fields of a mesh,
or in members of any aggregate types and the types they
contain. Once the mesh type and fields are defined, a mesh
instance is declared by using the defined type and providing
the dimensions (numbers of cells) of the mesh axes. Figure 2
shows the extended syntax used for these declarations.

// Define a two-dimensional uniform mesh with 3 cells
// along the x-axis and 2 cells along the y-axis.
MyUniformMesh umesh[3,2];

Fig. 2: Definition of a two-dimensional uniform mesh using mesh
type and field information from Figure 1.

To simplify program analysis for code generation and
optimization several restrictions are placed on how meshes
may be accessed and how assignments may be made to mesh
fields. Following the abstract data type model, fields may
only be accessed via mesh-centric operations and within those
constructs field data is immutable, thus enforcing static single
assignment (SSA) constraints within those code regions.

Scout includes other data types that are not in standard

C/C++: 2, 3, 4, and 8-wide vector types (used above) for each
of the built-in scalar data types (e.g. short, int, double,
etc.). Each of these types supports member-wise subscripting
and named accesses (like OpenCL, e.g., vector.xyz) and
assignment, and unary, arithmetic, relational, and comparison
operators.1 Additional data types for representing both on- and
off-screen image data are discussed in Section II-B3.

B. Scout Parallel Constructs

To address scaling and increasing core counts the language
exposes two classes of parallelism, namely data- and task-
parallelism. This section discusses the fundamental syntax and
semantics, including restrictions, for both.

1) Data-Parallel Operations: Computation over mesh ele-
ments is implemented via a forall statement that processes a
given set of locations (e.g. cells, vertices, faces). By definition,
the programmer may make no assumptions regarding the
order of execution across these locations—as implied by the
forall keyword this is (potentially) a data-parallel operation.
Each element that is processed is identified within the forall
body by an explicitly named, locally-scoped variable as part
of the forall syntax. The individual fields stored within the
element may be accessed through this variable. For example,
Figure 3 shows both the forall syntax and how it is possible
to use these named variables to operate over connected mesh
elements in a nested fashion. The language places a restriction
on the operations allowed within nested forall constructs:
the outermost construct can read and write mesh components
while inner constructs have only read access.

// For all cells ’c’ of the mesh ’umesh’
forall ce l ls c in umesh { // ’c’ -> active cell
...
forall vert ices v in c { // ’v’ -> active vertex

// vertex values are read-only, cell values
// are read/write-able...
...

}
}

Fig. 3: The forall construct provides a data-parallel model of
execution over the given set of locations within the mesh topology.

2) Task-Parallel Operations: Tasks in the language are
represented by decorating a C-style function with the task
type modifier. These task functions (or tasks) must be pure and
side-effect free: they must always return the same result when
provided the same input values, cannot modify or depend on
hidden and/or global state, cannot contain statically declared
variables, and cannot access input/output devices/streams. In
addition, to avoid aliasing issues and to support the potential of
distributed memories, any C/C++ types used as parameters to
tasks must currently maintain purity. Specifically, the compiler
presently enforces their being passed by value. Figure 4 shows
the basic syntax for a task function and that individual tasks
are launched using the standard C/C++ syntax for a function
invocation.

The (partial) order of task execution is constrained only by
the data dependencies between tasks as established by program

1These vector types and operations are easily supported and extended by
the Clang and LLVM infrastructure.



// Define a task that operates over the given mesh.
// This function must be pure (side-effect free).
task void MyTask(MyMesh &m) {
// body of task...

}
...
MyTask(m); // Invoke the task on the mesh.

Fig. 4: The task modifier specifies that a C-style function is pure
and can therefore be executed in a task-parallel fashion with other
task functions within the program.

order of invocation. A hierarchical structure of tasks may be
constructed by having task functions invoke further tasks. The
most significant aspects of this capability are handled by the
runtime as discussed in Section III.

3) Visualization Constructs: Complementing the compu-
tational operations over meshes, the language also provides
constructs for the in-situ visualization of the mesh elements.
These operations are supported by the renderall statement
that operates in the same fashion as the forall statement
over the specified elements of a mesh. The renderall
statement imposes the same order of execution restrictions
as forall. In addition, all renderall statements must
assign a value to the implicitly declared variable color that
represents a four-channel floating point color value in the
RGB (red, green, blue) color space with the fourth channel
representing an opacity/transparency component. This color
is assigned to the visual representation of the current mesh
element that is being processed. Other than color, only data
values declared within the scope of the renderall body
may be assigned a value. As shown below, the renderall
statement requires a rendering target that can be a type of
either a window (on-screen) or image (off-screen file-based
image). Each time the renderall statement is executed it
will save the resulting image to the designated target. Because
of the input/output nature of these targets they are only allowed
to be used as local variables within the body of a task. The
code snippet shown in Figure 5 presents an example image
and the basic renderall syntax.

The mesh data types and language constructs described
in this section all rely on layers of supporting software of
varying degrees of complexity. The current runtime layers all
represent works in progress and we are actively exploring the
trade-offs and implications that the design of these layers have
on supporting the overall language features, code generation,
and the flexibility of the overall toolchain.

The remainder of this paper focuses on the supporting
software layers for these extensions as well as the steps
we take to retain and utilize their provenance throughout
the compilation process. With this information propagated
through the stack, it is then possible to harness a general-
purpose debugging infrastructure to provide domain-specific
functionality.

III. RUNTIME

The runtime layers associated with the Scout language
provide a number of supporting features. In particular, they
support visualization, graphics and windowing system opera-
tions, initializing and utilizing GPU resources, and managing

extern const float MAX_TEMPERATURE;
...
// Create a 512x512 window for displaying mesh
// elements.
window win[512,512];
...
// Render the cells to the window. ’color’
// must be assigned to within the loop body.
// This assigns a color to the ’active’ cell.
renderal l ce l ls c in umesh to win {
float norm_temp = c.temperature / MAX_TEMPERATURE;
// Use the HSV (hue, saturation,value) colorspace
// to assign a color from blue (cold) to red (hot)
// for the cell.
color = hsv(240.0 - 240.0 * norm_temp, 1.0, 1.0);

}

Fig. 5: The renderall construct supports a data-parallel model
for producing in-situ visualizations of the given elements of the
mesh topology. The rendered image shows the temperatures of cells
from a simple heat transfer computation where the temperature
increases from blue to red.

the scheduling of tasks and data movement within the system.
The vast majority of the runtime components are implemented
in C++ but we have created a C API-based layer of abstraction
on top of these C++ components. The design of this layer
considers the language design with an overall goal of sim-
plifying code generation. In this sense, our approach is more
complex than source-to-source implementations. However, our
path affords us the modularity (front-end independence) gained
by using a common intermediate representation. We discuss
this aspect in greater detail in Section III-B2. In this section
we briefly discuss the runtime layer for supporting multiple
GPU architectures and then in greater detail discuss the
runtime support for task- and data-parallelism and execution
in a distributed memory environment. Other runtime aspects,
especially visualization and graphics support, are still in very
early design stages and are beyond the scope of this paper.

A. GPU Architecture Support

One of the goals in the design of the toolchain is to support
a single source to multiple architectures code generation path.
In the current implementation we support the generation of
data-parallel code for the forall and renderall state-
ments on multiple GPU architectures. Specifically, we support
NVIDIA and AMD GPUs via the CUDA and OpenCL APIs
for moving data between the host and discrete GPU memories
and for launching computations. The differences between these
two APIs are abstracted by a common runtime interface to
simplify code generation. The code generation for the forall



and renderall constructs occurs at the intermediate rep-
resentation level in the compiler and is discussed further in
Section III-B2.

B. Distributed Memory and Parallelism

To simplify the process of programming complex, large-
scale distributed-memory architectures from any language or
library-based interface it is clearly critical to have a powerful
and well-designed supporting software layer. In addition to
meeting key performance criteria, our interests in this layer
are support for locality and data movement within the mem-
ory hierarchy and across a distributed memory system, data-
and task-parallelism, and efficient and flexible scheduling of
hardware resources. As ever, we seek to simplify the process
of compiler-driven code generation. In short, the choice of
avoiding a source-to-source path is important but the design
of the runtime interface can significantly complicate the code
generation stage of compilation. For example, dealing with
C++ name mangling and/or a heavily template-based interface
can be cumbersome and error-prone.

1) The Legion Runtime System: Recently the Legion run-
time system [17], [18] was integrated into Scout. Legion is
an open-source, data-centric programming model and runtime
system for writing portable parallel and distributed programs.
Legion was chosen as Scout’s runtime for several reasons,
including

• Ability to expose high levels of concurrency; targets
distributed, heterogeneous hardware architectures; and
makes effective use of complex memory hierarchies;

• Provides expressive abstractions that insulate users
(i.e., application developers and automated code gen-
erators) from physical data layout considerations, data
movement, task placement, and hardware characteris-
tics (i.e., its interface is well-suited for automated code
generation);

• Has demonstrated the ability to run effectively across
a diverse set of large-scale HPC systems; and,

• Provides data and concurrency models that are consis-
tent with the Scout programming model and seman-
tics.

The design of Legion can be understood in terms of three
concepts: tasks for both task-level and data-parallel concur-
rency, logical data regions (logical regions), and physical data
regions (physical regions). Tasks are simply C++ functions that
have been registered with the Legion runtime. Tasks must be
pure (side-effect free) in the sense that they only read from
or write to data regions passed to them by the runtime on
their invocation. In addition to C++ support, tasks may also
be wrappers around CUDA-based GPU kernels.

A logical region is a data region that is created by the
runtime on behalf of the application. Structurally it is either a
set, or a one-, two-, or three-dimensional array of data points,
with each point in a region having a uniform set of fields
with each field of specified size (in bytes). Conceptually it is
isomorphic to a set or array of C structures, or colloquially
of plain old data structures. Logical regions are a machine-
independent abstraction for describing sets of data that can be
used by tasks.

Task invocation entails specifying what parts (indexes,
fields) of which logical regions the invoked task should have
access, together with specific access privileges (read, write,
read/write, etc.) and coherence requirements (for the case of
data being shared among tasks), all on a per-region, per-field
basis. The runtime then creates, for each logical region, a
physical region—in effect a handle to the specified parts of the
logical region—that is passed to the invoked task and remains
valid only for the duration of its execution. Through these
physical regions, or “views,” the task may read or write data
in the logical regions via runtime-provided accessors.

Because the Legion runtime knows the program order of
task invocation and has precise information about what data,
permissions, and coherence each task invocation requires, and
tasks have no side effects unknown to the runtime, the runtime
can infer the actual temporal data dependencies between
tasks and relax serial program ordering to achieve task-level
parallelism constrained only by those data dependencies and
the availability of compute resources. On a distributed system
this allows the runtime to make various scheduling and data-
motion optimizations such as temporarily replicating read-only
data on remote nodes.

Legion also provides a task launching mechanism to sim-
plify task invocation for data parallelism. This requires a spec-
ification of a partitioning of one or more logical regions, and a
task that will be multiply launched, once for each element of
the element of the partition. When sufficient compute resources
are available these tasks can be fully parallelized. Legion also
provides a mechanism to specify that such a set of tasks
must run in parallel to avoid deadlock because of inter-task
synchronization, in which case the system will gracefully abort
if resources cannot be made available.

2) Legion/Scout C Interface: The Legion/Scout C Interface
(lsci) is the bridging interface between Scout’s runtime library
and Legion’s C++ interface. It exposes a thin, specialized
C interface that provides high-level abstractions to create,
partition, update, and destroy Legion regions via Scout’s do-
main abstractions (e.g., uniform meshes). The impetus behind
providing such an interface is twofold. First, generating and
interfacing to C code is more convenient than to C++ with
Scout’s compiler infrastructure. Second, and more importantly,
the Scout runtime library is insulated from low-level Legion
details. That is, the Scout runtime library never directly manip-
ulates low-level Legion constructs (e.g., logical regions), but
rather manipulates the higher-level, domain-centric constructs

lsci unimesh t umesh;
// Create a 3x2 2D uniform mesh.
lsci_unimesh_create(&umesh, 3, 2, 1, ctx, rt);
// Add a cell-centered temperature field to the mesh.
lsci_unimesh_add_field(&umesh, LSCI_FIELD_CELL,

LSCI_TYPE_FLOAT,
"temperature", ctx, rt);

// Evenly partition mesh into 2 sub-domains.
lsci_unimesh_partition(&umesh, 2, ctx, rt);
// Call generated routine responsible for
// setting umesh’s initial conditions.
set_initial_conds(&umesh, ctx, rt);

Fig. 6: Example lsci runtime library calls similar to what would
be generated by the Scout compiler to create and manipulate a
uniform mesh.



provided by lsci that match the Scout model. Figure 6 provides
an example.

IV. COMPILER

Our toolchain is based on the LLVM compiler infrastruc-
ture. Specifically this includes the Clang C/C++ front-end [19],
the LLDB debugger [20], and the LLVM back-end [15].
Together these packages represent a well-designed, modular
toolchain that has been widely adopted by industry and is also
growing in popularity in the academic and research communi-
ties. This modularity, in concert with a per-component, library-
based design, represents what we consider to be the fundamen-
tal strength of this infrastructure, especially in comparison to
more monolithic, stand-alone compiler designs. This section
provides brief overviews of the Clang and LLVM components
and describes the overall approach taken in both employing
and extending them to support Scout and to preserve domain-
awareness throughout the toolchain. We provide details on
supporting debugging with LLDB in Section V. For reference,
Figure 7 provides a high-level diagram of the compiler stages
discussed in the remainder of the paper.

A. Parsing and Semantic Analysis

One of our key design decisions was to express language
features as first-class constructs rather than representing them
using existing constructs. While this provides useful syntac-
tic distinctions, it also plays a significant role in avoiding
confusion, conflicts, and ambiguities with the semantics of
C/C++. We have extended Clang to recognize our keywords,
enforce our grammar rules and semantic restrictions, and store
our own unique nodes in the abstract syntax tree (AST).
Although this sounds daunting, we achieve this and reuse
the vast majority of the Clang infrastructure for handling
lexical analysis, parsing, and AST operations with little or no
modification. Not surprisingly, this also enables us to maintain
consistent information (e.g., line information, shared symbols)
across both the base C/C++ languages and Scout’s extensions.

After the parsing stage the semantic analysis of the con-
structs described in Section II follow in a very similar pattern
in utilizing the Clang infrastructure. More specifically, this
stage uses Clang’s visitor pattern to add additional checks that
validate the rules for each of these constructs. Once again,
these operate in concert with those used for both the C and
C++ languages. Our development environment automatically
and regularly checks that our compiler passes Clang’s own
regression tests as well as Scout-specific ones. Once parsing
and semantic analysis are completed the preservation of the
domain context must be handled as the AST is lowered to the
LLVM intermediate representation (IR) [21].

B. Lowering and Domain Preservation

The preservation of Scout’s data types and constructs has
two possible implementation paths. The first is to extend
the LLVM IR language to support Scout’s data types and
statements. While this path would preserve the domain infor-
mation, it suffers a significant disadvantage of wiring a DSL-
centric intermediate representation into LLVM and forcing a
significant number of changes throughout the infrastructure. In
fact, the LLVM developers have provided a thoughtful warning

against extending LLVM in this manner.2 Overall, this path
would not only introduce a significant amount of effort but
also violate the important design decision of maintaining a
significant level of both language (front-end) and architecture
independence in the toolchain.

Fortunately, LLVM provides an alternative path in the
implementation of the IR that helps maintain this independence
and also reduces the impact on the overall code base. This
path involves the use of LLVM’s metadata capability to store
information directly within the IR [22]. This information may
then be used by metadata-centric analysis, optimization, and
code generation passes. For example, the mesh data types
represented within the AST are lowered to the IR by first
converting them into LLVM’s aggregate structure type and
then providing a table of metadata information to capture the
original properties of the mesh (e.g., fields and their locations
within the mesh). Figure 8 shows the completed lowering of
the mesh information given in Figures 1 and 2. Metadata
entries, identified by an exclamation point followed by an
integral value (e.g. !0), can be named, store typed LLVM
values, and reference other metadata entries. This capability is
flexible enough to build (simple) custom data structures within
the IR. Importantly, this metadata is only visible to those parts
of the infrastructure that are aware of its presence—in other
words, the entire standard functionality of LLVM remains
unaffected by the presence of Scout’s metadata.

We leverage LLVM’s metadata capabilities throughout the
process of lowering the AST to the intermediate language
as well as within the code analysis and generation stages.
In particular, this allows us to annotate task functions and
forall and renderall constructs with enough detail that
we can process them using the LLVM Pass Framework [23].
These details play a central role in transforming DSL-level
constructs into supporting runtime calls and finally into a
debugger-friendly executable form.

C. Code Generation

Code generation tasks begin with the metadata-enhanced
intermediate form that was lowered from the AST represen-
tation. The IR can simply pass through the default LLVM
components to generate a sequential version of the source
code that can be targeted to many of the back-end code gen-
erators available for LLVM (x86, ARM, PowerPC, etc.). For
parallel execution of the input program the compiler currently
supports two paths: (1) transformations of the forall and
renderall constructs into GPU kernels, and (2) transforma-
tion of the code into a distributed memory version supported by
the Legion runtime. At present we have yet to combine these
two paths into a single code generation target. The remainder
of this section provides an overview of the steps the compiler
takes to generate code for each of these code paths.

1) GPU Kernel Generation: The basic data-parallel form
supported by the forall construct maps easily to the exe-
cution model of GPUs. The details of GPU kernel generation
show an additional approach for leveraging LLVM’s metadata
support, the pass infrastructure, and various other features. For
both brevity and clarity we generalize our discussion as well

2 See http://llvm.org/docs/ExtendingLLVM.html.

http://llvm.org/docs/ExtendingLLVM.html
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Fig. 7: The high-level stages of the compiler and the association with the various components within the LLVM infrastructure. The front
end accepts mixed C/C++ and Scout language features and maintains the domain-centric metadata throughout the compilation process.
This metadata is finally transformed into an extended DWARF format that is recognized by a modified version of the LLDB debugger.

%MyUniformMesh = type{float*, <3xfloat>*,<3xfloat>*, … }

; Named metadata identifies each mesh type and the 
; topology locations of fields (now members in the 
; structure). 
!0 = metadata !{metadata !"MyUniformMesh", 

                metadata !"uniform", i32 2, 

                metadata !"cells", metadata !1, 

                metadata !"vertices", metadata !2, 

                metadata !"edges", metadata !3}

!1 = metadata !{metadata !"float", metadata !"temperature"}

!2 = metadata !{metadata !"float3", metadata !"velocity"}

!3 = metadata !{metadata !"float3", metadata !"flux"}

; Mesh lowered to aggregate structure type

Fig. 8: A sample of the LLVM intermediate language representation
of a aggregate data type accompanied by metadata to maintain mesh
type information. The arrows in the figure show the use of building
a simple data structure to capture the topological location of fields
within the mesh.

as limit it to details associated with targeting NVIDIA’s CUDA
parallel computing platform.

In the current implementation GPU code generation is
controlled solely by command line arguments that specify a
target architecture. With this mode enabled, the compiler takes
the following series of steps to transform a forall construct
into a GPU-targeted kernel.

1) The forall body is lowered independently of the
implied serial looping construct. In place of induction
variables, a set of hardware-independent thread index
variables are generated in the body. In a later stage of code
generation these placeholders are replaced with CUDA-
specific threadIdx values.

2) Next, the full set of instructions in the body of the
forall, including the newly created thread variables,
are extracted and inserted into a newly created function
that represents the GPU kernel. This function is then
registered using a metadata construct that marks it for
further processing by a target-specific pass. In addition, a
call to launch the kernel, as well as the data movement
calls for moving data between host and GPU memory, are
inserted at the location of the original forall statement.

3) The final transformation stage is handled by a target-
specific ForallPTX pass that transforms the thread index
values in the kernel and generates an in-lined character
string version of the kernel in NVIDIA PTX form [24].

This can be accomplished using either the open-source
NVPTX code generator in LLVM or the libNVVM API
from NVIDIA [25]. The final form of the kernel and data
movement calls are compatible with the CUDA Driver
API [26].

The generation steps for AMD’s processors (and the
OpenCL runtime) are very similar in nature but somewhat
more involved because of the need to create an Executable and
Linking Format (ELF) version of the kernel. As mentioned
in Section III, the runtime layer provides a set of common
GPU calls for the initialization and launching of kernels,
thereby simplifying code generation for the two supported
GPU platforms.

2) Legion Code Generation: Given the high-level overview
of Legion provided in Section III-B1, our mapping from
Scout’s data types are straightforward. Specifically, we trans-
form a mesh variable into a logical region, and the fields of the
mesh into fields of the logical region. These code generation
steps are significantly simplified by the lsci runtime interface.

The more challenging aspect of the code generation process
is related to the transformation of task functions into Legion
tasks and the associated initialization and registration steps.
The transformation of a task function requires the creation of
an associated Legion entry point. This entry point is the actual
Legion task and is responsible for unwrapping physical region
data to recreate a mesh instance and also any non-Scout data
types passed as function arguments. The final step is to then
generate a call to the task function as defined by the program-
mer. This leaves the original task in a debugger-friendly form.
This overall process is assisted by the presence of metadata in
the IR that helps to distinguish task functions from non-task
functions. In its current implementation the Legion runtime
requires all tasks to be registered during initialization, that
is, before the runtime has been started. To address this re-
quirement we generate an associated initialization/registration
function that is called at the start of program execution. It
is also necessary for the code generator to replace all task
function calls with Legion task launches. Readers interested
in the details of the Legion interface are encouraged to visit
the Legion tutorials page at http://legion.stanford.edu/tutorial.

http://legion.stanford.edu/tutorial


V. DEBUGGER SUPPORT

We regard debugging as having first-class importance, and
the absence of a domain-aware infrastructure as a crippling
shortcoming for the overall adoption of DSLs and in terms of
delivering on the expectations of improved developer produc-
tivity. Much like developing a language and the supporting
compiler infrastructure, writing a fully functional debugger
from scratch is a daunting and expensive task. In source-to-
source DSL implementations the transformation of the DSL
to the target language strips all domain context and there
are no direct methods to relate the executable back to the
DSL source. While line number associations are possible, the
debugger only operates in the context of the conventional
language, leaving debugging details typically in the hands of
the developer of the source-to-source translator and not the
application programmer. Unfortunately the general trend in the
community has been to leave debugging as a consideration of
secondary importance.

By building on Clang and LLVM we are able to leverage
the LLDB infrastructure to implement a debugger that does not
suffer from the shortcomings of source-to-source approaches.
The majority of this capability was afforded by the modular
and library-based design of the Clang and LLVM components.
In this case, the LLDB debugger directly builds on the capa-
bilities provided by these libraries, and therefore also on the
Scout DSL extensions. With this initial capability in place, a
set of modifications and extensions is required to complete an
initial domain-aware debugger. In the remainder of this section
we briefly discuss these implementation details as well as the
resulting capabilities they enable in the debugger.

A. Implementation

The implementation details of supporting the DSL within
LLDB follow very similar paths to the steps taken to extend
Clang and LLVM. As part of the extensions to Clang it
was necessary to lower custom debugging information into
the LLVM IR. In LLVM debugging information is actually
represented as a special case of the metadata that was pre-
viously described. This metadata is lowered into the final
executable using the DWARF format, a debugging file format
for procedural languages [27]. In our case it was necessary to
extend the back-end targets in LLVM to handle these steps.
In particular, we took advantage of the extensibility of the
DWARF format to capture the mesh and field type information.

With the DSL information embedded in the DWARF
portion of the binary we then had to ensure that LLDB was
able to process these sections and rebuild a Scout version of
the Clang AST for use within the debugging session. The
direct utilization of Clang as a collection of libraries provides
a significant advantage for these steps. In particular, LLDB’s
ability to parse and just-in-time compile user-specified code
during a debugging session provides tremendous savings in
terms of reducing development time. In addition, it also enables
DSL constructs to be directly utilized during a debugging
session. In particular, the use of renderall statements
can be directly used during debugging to build customized
visualizations that aid in the debugging process. A example
debugging session is shown in Figure 9, illustrating that not
only is the debugger aware of the DSL constructs, but that

(lldb) expr {
  window win[512,512];
  renderall cells c in heat_mesh to win {
    float norm_h = h_now / MAX_TEMP;
    float hue = 240.0f - 240.0f * norm_h;
    color = hsv(hue, 1.0f, 1.0f);
  }
}

Fig. 9: Using DSL language constructs from directly within the
debugger. Here the LLDB expr command is being used to evaluate
a renderall expression to make a rendering of the cells of a
flow-based heat transfer calculation.

these constructs can be entered and used directly for debugging
purposes during the debugging session.

The steps we have taken to preserve domain-awareness
in the debugging infrastructure are only the first of many.
In particular the complexities involved in providing a scal-
able, distributed-memory-based, task- and data-parallel, and
heterogeneous-architecture-aware debugger, that also main-
tains a fully domain-focused interface, will require a significant
amount of additional effort.

VI. RELATED WORK

While there is a significant amount of literature that covers
a wide range of DSLs, we focus our attention on work that pri-
marily focused on high-performance computing. While there
are many emerging language activities, there are surprisingly
few efforts in this space.

The most closely related language in concept to Scout
is Liszt [28], [29], a DSL for programming unstructured
mesh-based solvers. Liszt uses and manipulates the Scala
language’s abstract syntax tree to perform code transformations
and optimizations and ultimately targets a custom runtime and
source-to-source generated C++ and/or CUDA. This generated
code is then handed off to a native system compiler to produce
the final executable.

There are loose similarities with languages like Halide [30]
that focus on the optimization of the image processing pipeline.
The associated constructs share a similarity to the stencil com-
putations used within scientific applications and therefore the
language has potential outside of its original scope. In a similar



fashion to Scout, Halide utilizes the LLVM infrastructure for
its final code generation stages but is based on a custom
front-end and middle stages for the majority of analysis and
optimization operations.

Finally, the Delite compiler framework and runtime is fo-
cused on enabling the rapid construction of high-performance
DSLs [31], [32], [33]. While Delite focuses significantly
on infrastructure, three languages have been designed that
focus on machine learning (OptML) [34], data queries and
transformations (OptiQL), and graph analysis (OptiGraph).

In comparison to DSLs, domain-specific libraries/frame-
works for high-performance scientific computing are much
more common. Although there are numerous efforts to con-
sider, we cite OP2 and SIERRA as examples that are similar in
spirit and use designs that motivate the use of mesh constructs
and fields [35], [36]. In addition, OP2 also addresses portability
of mesh-based applications on both CPU and GPU-accelerated
architectures.

VII. EVALUATION

In this section we briefly consider the challenges and
benefits of our approach to designing and implementing the
Scout toolchain. This is based entirely on our experiences and
given that many significant items of work remain, it is not
meant to be complete or conclusive in nature.

In terms of challenges, the development of a productive,
full-featured, domain-focused programming environment for
HPC applications will likely require a significant investment.
Though this can vary based on approach and overall scope,
costs are driven in large part by compiler development, details
of the targeted architectures, complexities associated with the
supporting runtime infrastructures, and the incorporation of
developer-facing productivity tools (e.g. profilers and debug-
gers). Our adoption of the LLVM infrastructures provided a
significant cost savings and a feature set that would have been
impossible to reproduce in a reasonable amount of time. On
the other hand, especially in comparison to source-to-source
approaches, this approach carries with it the complexities of
a full toolchain and the thus the associated learning curves.
Finally, while DSLs provide some clear advantages for improv-
ing developer productivity and more effective code generation,
there are many challenges to achieving both acceptance and
adoption. The predominant concerns are the longevity of
specialized toolchains and their interoperability with existing
libraries and general-purpose programming languages such as
Fortran.

While these are formidable challenges, our experience
highlights some benefits of the approach. First, we have been
able to write small mesh-based programs that require far
fewer lines of code (hundreds as opposed to thousands) than
would be needed otherwise. It is important to note that our
efforts have been concentrated on enabling the toolchain and
demonstrating feasibility as opposed to refining the choice of
language features to address a specific set of needs for a partic-
ular problem domain. Furthermore, the foundation of a familiar
programming language and a corresponding toolchain have
been helpful for understanding the requirements of providing
longevity within the very active LLVM community. Via the
abstractions on top of the Legion runtime, we have been able to

hide many of the complexities of data movement and provide
initial support for task- and data-parallel forms of computation
in distributed-memory environments. Although we do not have
performance numbers ready for publication, gains seen in other
Legion-based efforts show promise. As a first step our goals
for providing a domain-aware toolchain have been realized and
we are in a position to explore further capabilities based on
the foundation discussed in this paper. While this initial step
is critical to improving the acceptance of DSLs, the goal of
adoption remains a challenge that will require further effort and
strong collaboration with scientists from various application
domains.

VIII. CONCLUSIONS

While we have not yet completed many significant steps
in our exploration, our work to date has convinced us that the
requirements of the entire toolchain should be considered when
designing and developing a DSL. Care must be taken in the
front-end design so that essential information is made avail-
able to the toolchain downstream. These requirements have
many ramifications, including on language features, runtime
capabilities supporting the programming model, exploiting
hardware acceleration, and debugging. We have developed a
solid and extensible basis for further exploration of a domain-
aware toolchain, and can go forward with development with a
deeper understanding of the benefits and challenges of this ap-
proach. We believe this approach can improve productivity on
increasingly complex high-performance computing platforms
by building in domain-specific language constructs and tools
that simplify programming and by providing an underlying
implementation that takes advantage of architectural features.
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