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Abstract

Modern supercomputers are dominated by distributed-memory machines. State of

the art high-performance scientific applications targeting these machines are typically

written in low-level, explicitly parallel programming models that enable maximal

performance but expose the user to programming hazards such as data races and

deadlocks. Conversely, implicitly parallel models isolate the user from these hazards

by providing easy-to-use sequential semantics and place responsibility for parallelism

and data movement on the system. However, traditional implementations of implicit

parallelism suffer from substantial limitations: static, compiler-based implementations

restrict the programming model to exclude dynamic features needed for unstruc-

tured applications, while dynamic, runtime-based approaches suffer from a sequential

bottleneck that limits the scalability of the system.

We present Regent, a programming language designed to enable a hybrid static

and dynamic analysis of implicit parallelism. Regent programs are composed of tasks

(functions with annotated data usage). Program data is stored in regions (hierarchical

collections); regions are dynamic, first-class values, but are named statically in the

type system to ensure correct usage and analyzability of programs. Tasks may execute

in parallel when they are mutually independent as determined by the annotated usage

(read, write, etc.) of regions passed as task arguments. A Regent implementation is

responsible for automatically discovering parallelism in a Regent program by analyzing

the executed tasks in program order.

A naive implementation of Regent would suffer from a sequential bottleneck as tasks

must be analyzed sequentially at runtime to discover parallelism, limiting scalability.

We present an optimizing compiler for Regent which transforms implicitly parallel
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programs into efficient explicitly parallel code. By analyzing the region arguments to

tasks, the compiler is able to determine the data movement implied by the sequence

of task calls, even in the presence of unstructured and data-dependent application

behavior. The compiler can then replace the implied data movement with explicit

communication and synchronization for efficient execution on distributed-memory

machines. We measure the performance and scalability of several Regent programs

on large supercomputers and demonstrate that optimized Regent programs perform

comparably to manually optimized explicitly parallel programs.
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Chapter 1

Introduction

Computation, and computational performance, has become an important driver of

scientific progress over the last several decades. Computer-based simulations are used,

for example, to test the validity of models of physical phenomena and to rapidly

explore the possible design space for physical systems. Such simulations are often

performance-constrained. That is, higher-fidelity simulations require more operations

to be performed by the computer, while the time allotted to compute a solution is

limited, and thus the performance of the computer system determines the maximum

fidelity of a simulation that can be attempted.

Fortunately, performance-constrained scientific simulations are also often highly

parallelizable (i.e., can be implemented efficiently on a parallel computer). For

such applications, simulation fidelity is limited primarily by the scale of the parallel

computer on which it can be efficiently executed. At the upper end of this scale,

supercomputers provide the highest possible performance available in a single, massively-

parallel computer. Applications written specifically for supercomputers are called

high-performance applications.

Supercomputers differ from conventional personal machines in two key ways. First,

they employ massive numbers of processors in order to accelerate the computation of

parallel applications. Second, they feature distributed as opposed to shared memories.

Briefly, the shared memory abstraction provides the illusion that a single logical

memory is accessible from all processors, whereas under distributed memory each

1
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processor only has direct access to a local memory and must access the remote

memories of other processors indirectly via an interconnect. Thus the distributed-

memory abstraction trades increased complexity for the potential to achieve superior

performance on these machines. Programming models can choose whether or not

to pass this complexity on to the programmer, but in high-performance application

development, performance is generally the top priority and thus the de facto standard

programming models in use on modern supercomputers are explicitly parallel. That is,

these models expose the parallel (and distributed) semantics of the hardware to the

user, permitting maximal performance at the cost of higher complexity. Ironically,

as a supercomputers grow in scale and complexity, the cost of achieving the absolute

highest possible performance within these explicit models can become prohibitive, and

thus production codes often stop short of this goal [14].

An attractive alternative to the explicit approach is implicit parallelism, in which

the user sees sequential execution, and the programming system is responsible for

achieving parallelism and distribution. By definition, the implicitly parallel approach

requires the system to perform a program analysis, or analysis of the possible effects

of a program, to determine where parallelism exists in the code. When it works,

implicit parallelism offers the best of both words: ease of use, and high performance.

However, outside of domain-specific settings, the implicitly parallel approach has faced

roadblocks which prevent it from scaling efficiently to large node counts with certain

classes of computations, such as simulations on unstructured meshes, in which the

required program analysis is challenging.

This dissertation aims to show that leveraging coarse-grained tasks (functions)

with strict privileges (denoting what data a task reads and writes) and user-visible

partitioning (permitting the user to specify the relevant sets of data and their relation-

ships) enables implicitly parallel programs with sequential semantics to be compiled

to efficient SPMD code that scales to large numbers of nodes. For certain classes of

codes, such as simulations on unstructured meshes, this permits implicitly parallel

implementations to achieve practical levels of scalability.

The following sections establish in more detail the various points in the design space

of parallel programming systems, and lay out a motivating example that demonstrates
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some of the challenges in these designs.

1.1 Background

While a number of programming models for supercomputers have been developed, by

far the most successful is the SPMD, or single-program multiple-data, programming

model exemplified by MPI [64]. MPI is an explicitly parallel and distributed abstraction

layer that (by design) closely reflects the capabilities of the underlying hardware. An

executing MPI program consists of a set of ranks, or independent copies of the code,

that run on distinct processors with distinct memories and that have the ability to

send messages to communicate data between ranks. No other method of accessing

the contents of remote memories is provided. This approach has the advantage that

because the hardware capabilities are directly exposed, experienced programmers are

able to map applications directly to this hardware in a way that reliably achieves high

performance.

However, the approach taken by MPI also has a number of disadvantages. First,

while the abstractions of MPI closely resemble the hardware, they do not generally

reflect the way that applications themselves are conceived, and thus there is some

work required to map an application into the MPI model in the first place. Second, a

result of MPI’s design is that the programmer is exposed to a number of programming

hazards, or potential mistakes a programmer can make in the implementation of

an application in MPI. These include traditional pitfalls of parallel programming

(e.g. data races, deadlocks, non-determinism) as well as ones specific to MPI (e.g.

mismatched sends and receives). Third, MPI achieves performance only when the

underlying machine resembles at least to a first approximation the class of machines

for which MPI was originally designed: i.e. ones with homogeneous processors with

reasonable network latencies and a reasonably uniform interconnect. Increasingly,

modern and future machines diverge from this design in one or more dimensions (scale,

hierarchy, heterogeneity, etc.). Although MPI can be augmented to create a number

of “MPI+X” programming models to account for e.g. the presence of heterogeneous

processors, these approaches introduce additional complexity and hurdles which make
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it challenging to achieve performance.

As described above, an attractive alternative is to employ an implicitly parallel

programming model where programs appear to execute with sequential semantics but

can be parallelized automatically by the system. Classic parallelizing compilers [19,37,

43], HPF [45,56] and the data parallel subset of Chapel [27] are canonical examples;

other examples include MapReduce [32] and Spark [74] and task-based models such

as Sequoia [35], Legion [13], StarPU [10], and PaRSEC [22].

Because implicitly parallel programming models employ sequential execution

semantics, programs in these models are easy to read and write for both expert

and non-expert users, and also avoid by definition the various programming hazards

associated with explicit parallel and distributed programming. Furthermore, such

systems can be designed to exploit information about the structure of the program

control and data, permitting the system to automatically schedule such programs for

execution on machines with heterogeneous processors and automatically manage data

movement across the deep memory hierarchies present in such systems.

For the programming system to automatically find the parallelism in an implicitly

parallel program—where by definition that parallelism is not explicitly specified by the

user—some amount of program analysis is required. This analysis can be performed

at different times: either statically, without specific knowledge of the runtime inputs

to the program, or dynamically, when such inputs are available. Both approaches

have fundamental limitations.

Due to the halting problem (and more generally, Rice’s theorem), static analysis

of non-trivial program properties such as parallelism is challenging. For the analysis

to be tractable, systems must sacrifice either soundness or completeness.

A system that sacrifices soundness admits programming hazards into the model—

i.e. it’s possible for the user to make a mistake and the system won’t (and can’t) know.

At the far end of this spectrum is OpenMP [31], which implicitly trusts user assertions

about parallelism; the system has no ability whatsoever to check the correctness of

these assertions. As another example, Cilk [2] relies on shared memory to avoid the

need for a precise analysis of the side effects of tasks. The lack of soundness limits

the ability of a compiler to perform aggressive optimizations, making it challenging to
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scale these models efficiently to distributed memory.

On the other hand, a system that sacrifices completeness must restrict the possible

input programs—meaning that there will in general be valid programs that would

execute correctly if permitted, but are disallowed by the system. As a somewhat

extreme example, Cilk (described above) can be used without support for shared

memory (and without relying on a distributed shared-memory subsystem), but in

such cases tasks are required to be pure functions, making the programming model

substantially more restrictive. However, the same principle is visible to varying degrees

in many implicitly parallel programming systems.

This is clearly the case with domain-specific languages (DSLs), where the intended

domain is explicitly identified. For example, in the Ebb [16] DSL the bodies of functions

(kernels) are restricted to a class of forall-style parallel loops with stencil-like memory

access patterns. The advantage of these restrictions is that they permit a more robust

and predictable implementation. The memory access patterns permitted by Ebb can

be checked by a straightforward static analysis which is included in the Ebb type

system. As a result, any Ebb program which compiles successfully is guaranteed to be

free of parallel programming hazards such as deadlocks and data races. Furthermore,

because of the restrictions in the programming model, Ebb programs can be compiled

automatically for efficient execution on GPUs and vectorized execution on CPUs.

However, Ebb’s restrictions on programs limit the applicability of the technique to

certain classes of applications.

A risk with more general-purpose languages is that there can be a gap between

what the compiler nominally supports, and what it supports well. For example, the

HPF language [45, 56] provides rather ambitious support for automatic parallelization

of general loops via the DO loop construct. In practice, HPF compilers can reliably

parallelize affine loops. More general loops may be difficult or impossible for the

compiler to parallelize, even if it is obvious to the programmer that those loops have

no loop-carried dependencies. This is a reflection of the difficulty of static analysis of

fine-grained memory accesses in general-purpose programs.

An alternative is to consider programs on coarse-grained tasks and partitions of

data. Under this approach, the user explicitly identifies the relevant units of compute
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and data, potentially simplifying the required analysis.

Sequoia [35] is an example of such a language that also makes extensive use of

static analysis. Sequoia programs consist of a decomposition of a sequential program

into a tree of tasks. Leaf tasks (i.e. that do not call other tasks) are permitted to

contain arbitrary code, as they need not be analyzed by the compiler. However, inner

tasks (i.e. that call other tasks) must be analyzed by the compiler, and thus have

many restrictions. The only permitted data structures are (multi-dimensional) arrays,

and the partitioning of such arrays is restricted so that sub-arrays must also be dense.

The sizes of all data structures, including inputs, must be supplied to the compiler

at compile-time, and the exact number of tasks to be executed must also be fixed

statically. Furthermore, a specification of the target machine, and a mapping of the

application to that target machine, must also be provided to the compiler. With all

this information, a compiler has a complete view of the execution of the program

and can perform a number of powerful optimizations [46]. However, the restrictions

(though not applicable to leaf tasks) are substantial and prevent the system from being

applied to less regular problems such as unstructured meshes. Again, static analysis

(when soundness is an objective) forces the programming model to place significant

restrictions on the possible input programs.

Thus, with approaches based on static analysis, there is a fundamental trade-off

between expressiveness and tractability of the analysis. Programming systems must

explicitly or implicitly limit the set of programs that are supported, assuming safety

is a goal, or else give up safety entirely and rely on programmer assertions about key

program properties.

Dynamic analysis avoids many of the limitations of static analysis, but presents a

different set of challenges.

A classic approach used to parallelize sequential programs with fine-grained loops is

the inspector/executor (I/E) method [53,54]. Under the I/E method, loop dependencies

are determined by instrumenting the program to record the exact read and write sets of

each loop iteration at runtime. Because the approach relies only on a dynamic, rather

than static, analysis it can be applied to very general classes of loops. However, the

information being recorded about the program is so fine-grained that at large problem
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sizes and large scales, the program may run out of memory before it even begins to run.

Implementations that attempt to save space in the dynamic analysis by approximating

the information collected lose precision and thus impose additional communication

overheads resulting in worse overall scalability [47]. As with static analysis, there is a

trade-off between fine and coarse-grained approaches, where fine-grained approaches

lose sight of many higher-level program properties that could help reduce analysis

cost.

Legion [13] is a programming model with coarse-grained tasks, similar in its basic

outlines to Sequoia, but which employs an entirely dynamic analysis. Thus Legion

allows substantially more dynamic behavior than Sequoia, permitting, for example,

dynamic, input-dependent, and possibly unstructured or sparse data structures, dy-

namic numbers of and dependencies between tasks, and a dynamic mapping of the

application to a target machine. Legion permits very expressive partitioning of user

data structures, allowing the user to specify with precision the important subsets of

data, avoiding the need for expensive (in time and memory) fine-grained dynamic anal-

ysis. However, these benefits come at the cost of a less expensive but still non-trivial

coarse-grained dynamic analysis. In Legion, this analysis happens off the critical path

of the computation, so the cost is hidden as long as the application running time

(total running time of tasks divided by number of processors) is greater than the

time required for the dynamic analysis. However, as the analysis time for common

programming idioms is itself proportional to the number of tasks, while the ratio of

running time to processors generally stays constant (when weak scaling), the overhead

generally exceeds running time at some scale. In our experience this happens between

10 to 100 nodes on typical HPC applications.

This dissertation presents Regent, a programming language for task-based implicit

parallelism. Regent takes a hybrid approach that allows it to carefully and robustly

navigate the trade-offs described above. Regent programs are composed of tasks, and

tasks take regions as arguments. Regent borrows many aspects from Sequoia and

Legion: for example, the effects of tasks are soundly summarized by the privileges

(read, write, etc.) declared on parameters to tasks, thus avoiding the need for fine-

grained static analysis at the level of individual memory accesses as in OpenMP, Ebb,
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HPF, and I/E methods. And language support for partitioning enables the user to

identify the important subsets of data and their relationships.

The default semantics of Regent are sequential, as this is the easiest and most

productive way to use the language, and is intended to be the way the vast majority

of users use the language. Regent also provides a variety of “escape hatches” that

enable explicit parallelism within the language that are primarily intended to be used

in situations where the compiler and runtime are unable to achieve performance on a

straightforwardly written implicitly parallel program. This also has a side benefit of

making it easy to describe Regent’s optimizations, as all code transformations produce

valid Regent code (though possibly requiring the use of Regent’s explicitly parallel

subset). However, as the goal of this work is to make the implicitly parallel subset

as effective as possible, all references to “Regent” should be assumed to refer to the

implicitly parallel subset unless otherwise stated.

Regent allows highly dynamic behavior. The number, values of arguments to, and

dependencies between tasks are all dynamically determined, and the data model is

very expressive. Regent’s regions (containers of elements) may be partitioned into

dynamically determined numbers of subregions and these subregions may include

arbitrary, dynamically computed subsets of elements.

However, unlike a pure dynamic runtime system, Regent checks various properties

of the input program via static analysis, allowing Regent to achieve a number of static

safety guarantees. For example, privileges on region arguments to tasks are checked

statically, as is the safety of pointer dereferences within regions.

Furthermore, Regent’s amenability to static analysis enables a number of optimiza-

tions that enable efficient scalability to large numbers of nodes. One optimization

of particular importance is control replication. For programs with repetitive loops of

task launches, Regent is able to apply aggressive static optimizations to achieve an

algorithmic reduction in the cost of dynamic analysis compared to I/E methods and

Legion, while preserving Regent’s ability to handle substantially dynamic behavior.

Although Regent may not be able to fully characterize the dependencies between tasks

at compile-time, and thus may not be able to completely eliminate the overhead of

dynamic analysis, Regent is able to apply a transformation of the code to produce
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SPMD-style shards of execution that distribute this analysis across multiple nodes to

significantly improve the scalability of Regent codes.

We demonstrate that control replication achieves up to 99% parallel efficiency on

1024 nodes (12288 cores) on the Piz Daint supercomputer, on a set of applications

with tasks on the order of milliseconds to tens of milliseconds. For several classes of

applications that we consider, such as simulations on unstructured meshes, this is to

the best of our knowledge the first automatic technique capable of achieving practical

levels of scalability for these applications where the application source code is written

in a general-purpose language with sequential semantics. Control replication is not

limited to Regent, but is enabled by the careful selection of features that Regent

provides, and is one of the key contributions of this work.

To expand on the motivation of Regent and particularly control replication, we now

consider a more concrete example in the context of the control replication optimization.

1.2 Motivating Example

Consider the code in Figure 1.1a, an example of the implicitly parallel style described

above. Assuming there are no loop carried dependencies, the parallelization of this

program is straightforward: The iterations of each of the two inner loops can be

executed in parallel on multiple processors in a fork-join style. As illustrated in

Figure 1.1c, a main thread launches a number of worker threads for the first loop,

each of which executes one (or more) loop iterations. There is a synchronization

point at the end of the loop where control returns to the main thread; the second

loop is executed similarly. Because the second loop can have a completely different

data access pattern than the first (indicated by the arbitrary function h in B[h(j)]),

complex algorithms can be expressed.

As already suggested, in practice programmers don’t write highly scalable, high-

performance codes in the implicitly parallel style of Figure 1.1a. Instead, they write

the SPMD-style code in Figure 1.1b. Here the launching of a set of worker threads

happens once, at program start, and the workers run until the end of the computation.

We can see in Figures 1.1c and 1.1d that conceptually the correspondence between
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1 for t = 0, T do
2 for i = 0, N do −− Parallel
3 B[i] = F(A[i])
4 end
5 for j = 0, N do −− Parallel
6 A[j] = G(B[h(j)])
7 end
8 end

(a) Original program.

1 for i = 0, N do −− Parallel
2 for t = 0, T do
3 B[i] = F(A[i])
4 −− Synchronization required
5 A[i] = G(B[h(i)])
6 end
7 end

(b) Transposed program.

F(A[0])

F(A[1])

. . .

F(A[N-1])

. . .

. . .

. . .

. . .

G(B[h(0)])

G(B[h(1)])

. . .

G(B[h(N-1)])

(c) Implicitly parallel execution of original program.

F(A[0]) . . . G(B[h(0)])

F(A[1])

. . .

. . .

. . .

G(B[h(1)])

F(A[N-1]) . . . G(B[h(N-1)])

(d) SPMD execution of transposed program.

Figure 1.1: Comparison of implicit and explicit parallelism.

the programs is simple. Where Figure 1.1a launches N workers in the first loop and

then N workers in the second loop, Figure 1.1b groups sequences of worker tasks into

larger parallel threads in the obvious way.

While Figure 1.1a and Figure 1.1b are functionally equivalent, they have asymp-

totically different scalability. To see this, consider what happens in Figure 1.1a as the

number of workers N (the “height” of the execution graph in Figure 1.1c) increases.

Under weak scaling, the time to execute each worker task (e.g., F(A[i]) in the first

loop) remains constant, but the main control thread does O(TN) work to launch

2TN workers. Thus, for some N , the runtime overhead of launching workers exceeds

the individual worker’s execution time and the program ceases to scale. While the
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exact scalability in practice always depends on how long-running the parallel worker

tasks are, our experience is that many implicitly parallel programs don’t scale beyond

10 to 100 nodes when task granularities are on the order of milliseconds to tens of

milliseconds. In contrast, the SPMD program in Figure 1.1b launches only N workers,

avoiding the cost of repeated launches on every time step (the T loop). Programs

written in SPMD style can scale to thousands or tens of thousands of nodes.

However, from a usability perspective implicit parallelism is provides clear benefits

over SPMD. While it is not possible to give precise measurements, it is clear that the

difference in productivity is large: In our experience an implicitly parallel program

that takes a day to write will require roughly a week to code in SPMD style. The

extra programming cost is incurred because the individual workers in Figure 1.1b each

compute only a piece of the first loop of Figure 1.1a, and thus explicit synchronization

is required to ensure that all fragments of the first loop in all workers finish before

dependent parts of the second loop begin. Furthermore, because the access patterns

of the two loops in Figure 1.1a need not be the same, data movement is in general

also needed to ensure that the values written by the various distributed pieces of

the first loop are communicated to the threads that will read those values in the

distributed pieces of the second loop. In most SPMD models (and, specifically, in MPI)

this data movement must be explicitly written and optimized by the programmer.

The synchronization and the data movement are by far the most difficult and time

consuming parts of SPMD programs to get right, and these are exactly the parts that

are not required in implicitly parallel programs.

Control replication allows us to both “have our cake and eat it”, extending the

performance range of the implicitly parallel style so that programs written in this

style can achieve scalability and performance comparable to hand-written SPMD code.

Control replication leverages a combination of static and dynamic analysis to generate

long-running shards that amortize the overhead of executing large numbers of tasks.

Intuitively, the control flow of the original implicitly parallel program is replicated

across the shards, with each shard maintaining enough state to mimic the decisions of

the original control thread. An important feature of control replication is that it is a

local transformation, applying to a single collection of loops. Thus, it need not be
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applied only at the top level, and can in fact be applied independently to different

parts of a program and at multiple different scales of nested parallelism.

As suggested above, the heart of the control replication transformation depends on

the ability to analyze the implicitly parallel program with sufficient precision to generate

the needed synchronization and data movement between shards. Similar analyses are

known to be very difficult in traditional programming languages. Past approaches

that have attempted optimizations with comparable goals to control replication have

relied on either very sophisticated, complex and therefore unpredictable static analysis

(e.g., HPF) or have relied much more heavily on dynamic analysis with associated

run-time overheads (e.g., inspector-executor systems [54]).

A key aspect of our work is the interaction between the programming language

and control replication. Regent leverages recent advances in parallel programming

model design that greatly simplify and make reliable and predictable the static

analysis component of control replication. Many parallel programming models allow

programmers to specify a partition of the data, to name different subsets of the data on

which parallel computations will be carried out. Recent proposals allow programmers

to define and use multiple partitions of the same data [13,20]. For example, returning

to our abstract example in Figure 1.1a, one loop may be accessing a matrix partitioned

by columns while the other loop accesses the same matrix partitioned by rows. Control

replication relies on the programmer to declare the data partitions of interest (e.g.,

rows and columns). The static analysis is carried out only at the granularity of

the partitions and determines which partitions may share elements and therefore

might require communication between shards. The dynamic analysis optimizes the

communication at runtime by computing exactly which elements they share.

An important property of this approach is that the control replication transforma-

tion is guaranteed to succeed for any programmer-specified partitions of the data, even

though the partitions can be arbitrary. Partitions name program access patterns, and

control replication reasons at the level of those coarser collections and their possible

overlaps. This situation contrasts with the static analysis of programs where the access

patterns must be inferred from individual memory references; current techniques, such

as polyhedral analyses, work very well for affine index expressions [21], but do not
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address programs with more complex accesses.

We present an optimizing compiler for Regent, which includes the control replica-

tion optimization. We evaluate Regent, and control replication, using five codes: a

circuit simulation on an unstructured graph, an explicit solver for the compressible

Navier-Stokes equations on a 3D unstructured mesh, a Lagrangian hydrodynamics

proxy application on a 2D unstructured mesh, a stencil benchmark on a regular grid,

and a turbulence and particle solver on a 3D structured grid. Our implementation

achieves up to 99% parallel efficiency on 1024 nodes (12288 cores) on the Piz Daint su-

percomputer [7] while providing overall performance comparable hand-tuned MPI(+X)

reference codes (where available).

This work makes the following key contributions:

• Chapter 2 presents the design of Regent, a practical programming language for

implicitly parallel, task-based programming with logical regions.

• Chapter 3 describes control replication. To the best of our knowledge, we are

the first to demonstrate the impact of programming model support for multiple

partitions on a compiler analysis and transformation. We show that this feature

can be leveraged to provide both good productivity and scalability.

• Chapter 4 discusses the translation from Regent programs to the Legion runtime

API. Regent is the first, to the best of our knowledge, to target a dynamic

task-based runtime in this way.

• Chapter 5 considers novel optimizations required to ensure that the translation

from Regent to Legion is efficient.

• Chapter 6 presents an implementation of the Regent programming language and

discusses various details of this implementation.

• Chapter 7 provides a qualitative evaluation of Regent by presenting from first

principles the design of an application in Regent.

• Chapter 8 contains a quantitative evaluation of Regent. For the class of appli-

cations considered, we are the first (to the best of our knowledge) to provide
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practical levels of scalability for general-purpose implicitly parallel programs.

We demonstrate scaling to 48x more cores than the previous best known tech-

niques (12288 vs. 256 cores) while maintaining performance competitive with

hand-written MPI(+X) codes.

Following this, Chapter 9 describes Regent in the broader context of related work,

and Chapter 10 concludes.



Chapter 2

Programming Model

Regent is a programming language with support for both implicit and explicit paral-

lelism, making it possible to describe both the base language and the output of various

optimizations, such as control replication transformation, entirely within one system.

In particular, Regent’s support for multiple partitions of data collections enables a

particularly straightforward analysis of data movement required for efficient SPMD

code generation. In this section, we discuss the Regent programming model, focusing

on features relevant to the control replication transformation. Initially, we describe

the implicitly parallel subset, then consider extensions for explicit parallelism.

2.1 Regent Example

Continuing from the example in Section 1.2, we consider a implementation of the

same algorithm in Regent and discuss the features used in the Regent implementation

of the code.

Figure 2.1 shows a Regent version of the program in Figure 1.1a. The two inner

loops with calls to point functions F and G have been extracted into tasks TF and

TG on lines 1-6 and 8-13, respectively. These tasks identify the granularity at which

Regent will consider a parallel execution of the code. In this case, we have selected

tasks in the obvious way by partitioning the iteration spaces of the loops into blocks

of an appropriate size. The main simulation loop has been rewritten to call these

15
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1 task TF(B : region(SU, . . . ), A : region(SU, . . . ))
2 where reads writes(B), reads(A) do
3 for i in SU do
4 B[i] = F(A[i])
5 end
6 end
7

8 task TG(A : region(SU, . . . ), B : region( , . . . ))
9 where reads writes(A), reads(B) do

10 for j in SU do
11 A[j] = G(B[h(j)])
12 end
13 end
14

15−− Main Simulation:
16 var U = ispace(0..N)
17 var I = ispace(0..NT)
18 var A = region(U, . . . )
19 var B = region(U, . . . )
20 var PA = block(A, I)
21 var PB = block(B, I)
22 var QB = image(B, PB, h)
23 for t = 0, T do
24 for i in I do
25 TF(PB[i], PA[i])
26 end
27 for j in I do
28 TG(PA[j], QB[j])
29 end
30 end

Figure 2.1: Regent version of program with aliasing.

tasks. The arguments to tasks have also also been partitioned to identify the subsets

of the data being passed to each parallel task.

A central concern of the Regent programming language is the management and

partitioning of data. Data in Regent is stored in regions. A region is a (structured or

unstructured) collection of objects and may be partitioned into subregions that name

subsets of the elements of the parent region.

Lines 18 and 19 declare two regions A and B that correspond to the arrays by the
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same name in the original program. These regions contains elements of some data type

indexed from 0 to N− 1. (The element data type does not matter for the purposes of

most Regent optimizations and analysis.) The declaration of the index space U on line

16 gives a name to the set of indices for the regions; symbolic names for sets of indices

are helpful because in general regions may be structured or unstructured, and are

not necessarily indexed contiguously. Note that memory allocation for regions is lazy.

No actual memory allocation occurs at lines 18-19. Instead the program proceeds

to partition the regions into subregions so that the eventual memory allocations are

distributed across the machine.

Lines 20-22 contain calls to partitioning operators. The first two of these, on lines

20 and 21, declare block partitions of the regions A and B into roughly equal-sized

subregions numbered 0 to NT− 1. (As before, a variable I is declared on line 17 to

name this set of indices.) The variables PA and PB name the sets of subregions created

in the respective partitioning operations. For convenience, we name the object which

represents a set of subregions a partition.

Line 22 declares a second partition QB of the region B based on the image of the

function h over PB. That is, for every element b of region B, h(b) ∈ QB[i] if b ∈ PB[i].

This partition describes exactly the set of elements that will be read inside the task TG

on line 11. Importantly, there are no restrictions on the form or semantics of h. As a

result, QB may not be a partition in the mathematical sense; i.e. the subregions of QB

are not required to be disjoint, and the union of subregions need not cover the entire

region B. In practice this formulation of partitioning is extremely useful for naming

the sets of elements involved in e.g. halo exchanges.

Regent supports a number of additional operators as part of an expressive sub-

language for partitioning, described in more detail in Section 2.3.2. In the general

case, Regent partitions are extremely flexible and may divide regions into subregions

containing arbitrary subsets of elements. For the purposes of control replication and

most other Regent optimizations, the only property of partitions that is necessary

to analyze statically is the disjointness of partitions. A partition object is said to be

disjoint if the subregions can be statically proven to be non-overlapping, otherwise

the partition is statically aliased. For example, the block partition operators on lines
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20-21 produce disjoint partitions as the subregions are always guaranteed to be non-

overlapping. For the image operator on line 22, the function h is unconstrained and

thus Regent assumes that the subregions may contain overlaps, causing the resulting

partition to be considered aliased.

Note that the subregions of a statically aliased partition may not necessarily overlap

at runtime; i.e., due to the nature of the conservative approximations in the language,

a statically aliased partition might not be dynamically aliased. As the compile-time

optimizations in Regent must rely on this static approximation, it is possible for

some compiler optimizations to fail statically that might succeed if more dynamic

information were available. However, Regent is quite lenient with respect to statically

aliased partitions, and in practice with control replication and other optimizations,

this has not been a limiting factor. In addition, as described in Section 6.1, in cases

where static optimizations are not possible, Regent falls back to a runtime-based

implementation which is able to recover most parallelism dynamically.

The main simulation loop on lines 23-30 then executes a sequence of task calls

with the appropriate subregions as arguments. Tasks declare privileges on their

region arguments (read, write, or reduce on an associative and commutative operator).

Execution of tasks is apparently sequential. Two tasks may execute in parallel as long

as they operate on disjoint regions, or with compatible privileges (e.g. both read, or

both reduce with the same operator). Regent programs are typically written such

that the inner loop can execute in parallel; in this case the loops on lines 24-26 and

27-29 both execute in parallel.

Note that in Regent, unlike in the fork-join parallel execution of Figure 1.1c, there

is not an implicit global synchronization point at the end of each inner loop. Instead,

Regent computes the dependencies directly between pairs of tasks (as described above)

and thus tasks from different inner loops may execute in parallel if doing so preserves

sequential semantics.

An important property of Regent tasks is that privileges are strict. That is, a task

may only call another task if its own privileges are a superset of those required by the

other task. Similarly, any reads or writes to elements of a region must conform to the

privileges specified by the task. As a result, a compile-time analysis such as control
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replication need not consider the code inside of a task. All of the analysis for control

replication will be at the level of tasks, privileges declared for tasks, region arguments

to tasks, and the disjointness or aliasing of region arguments to tasks.

2.2 Execution Model

Now we consider the Regent programming model in more detail. Regent (in its default

mode) is an implicitly parallel programming language; Regent programs have sequential

semantics and the system (compiler and runtime) is responsible for automatically

discovering parallelism in the program. In a naive sense this is sufficient for the system

to achieve parallel execution of the program. However, in order to achieve efficient

execution, additional information is required from the user. In particular, the user

must decompose the program into tasks and regions of appropriate granularity for

execution on the target machine. Tasks divide program control (recursively) into

subtasks, while regions divide program data (recursively) into subregions. These

decompositions of the program often influence one another and are thus frequently

decided together. For clarity of the following discussion, we consider tasks (and

division of control) first, then regions (and division of data).

2.2.1 Tasks

A task is the fundamental unit of control in Regent. Tasks resemble functions in

traditional programming languages with formal parameters and a body. Figure 2.2a

shows an example program with four tasks.

Execution in the example begins at the top of the task main and follows standard

sequential semantics. Tasks may call subtasks (lines 13-15), and subtasks may recur-

sively call their own subtasks. Thus the program can be seen as being decomposed

into a tree of tasks as shown for the example in Figure 2.2b. Potential parallelism

exists between the children of a given parent task in the tree. Two sibling tasks are

allowed to run in parallel when the system can prove them to non-interfering. The

non-interference of two tasks is determined (conceptually) by comparing all pairs of
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1 task f(a : region) where reads writes(a) do . . . end
2 task g(b : region) where reads writes(b) do . . . end
3 task h(c : region, d : region)
4 where reads writes(c, d) do
5 f(c)
6 g(c)
7 f(d)
8 end
9

10 task main()
11 var x = region(. . . )
12 var y = region(. . . )
13 f(x)
14 g(y)
15 h(x, y)
16 end

(a) A program with four tasks.

main

f(x) g(y) h(x, y)

f(x) g(x) f(y)

(b) A task tree. Parent-child relationships are shown with solid arrows, and sibling dependencies are
shown with dashed red arrows.

Figure 2.2: A Regent program and corresponding task tree.
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actual arguments to those tasks for interference. Specifically, a pair of task arguments

is non-interfering when:

1. the two regions are disjoint,

2. the privileges requested are both read or both reduce with the same operator,

3. or the privileges name disjoint fields within the objects of the two respective

regions.

Conversely, whenever the arguments of two tasks cannot be proven to be non-

interfering, a dependence exists between the tasks. In practice, this formulation is

more useful, as dependencies form a DAG which can directly guide the execution

of a program. Dependencies are computed automatically using the rules for non-

interference between tasks. Two restrictions in the programming model allow this

analysis to be tractable: First, tasks in Regent are only permitted to access data passed

via formal parameters, so any data accesses can be safely determined by examining the

arguments supplied to tasks. Second, the ways in which data are used are identified

explicitly via a task’s privileges.

Note that this analysis can be performed at either compile time or at runtime. At

compile time, the compiler may not have full information about aliasing in the program,

but even a conservative analysis can often enable useful optimizations. Regardless

of the result of any compile-time analysis, the runtime will determine the precise

dependencies at runtime to exploit any latent parallelism which may be available.

Dependencies between the tasks in the example are shown as dashed red lines in

Figure 2.2b. The two calls to f and g from main are independent, because they use

distinct data. (In this example, we assume that x and y are regions that do not share

any common elements.) The subsequent call to h is dependent on both previous tasks.

The call to g from h is dependent on the call to the same task from main because

dependencies for parent tasks apply transitively to children.

In general, the arguments passed to tasks may be complex expressions naming

non-trivial collections of elements, and the language for describing such collections of

elements is quite expressive. As such the problem of finding dependencies between
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tasks requires in the general case a dynamic analysis which can be expensive when

the number of subtasks being executed is large. Chapter 3 considers an optimization

which is able to leverage partial static information reduce the cost of this analysis.

First, however, we consider the language features for data partitioning which enable

Regent to be so expressive.

2.3 Data Model

Regent programs consist of a decomposition of control into tasks, and a parallel

decomposition of data into regions, or collections of data elements. Regions are

typically used as arguments to tasks, and thus designate the sets of elements those

tasks are intended to access. On distributed-memory machines, regions also frequently

denote sets of elements to be allocated in on-node memories, or to be communicated

between memories on distant nodes, both of which can have a significant impact on

performance. As such, it is of the utmost importance for Regent to provide sufficiently

expressive features for describing the sets of elements contained in regions.

2.3.1 Regions

Regions are containers of data elements, similar to arrays of objects in traditional

programming languages or relations in relational databases. Regions map indices in

an index space to objects consisting of multiple fields in a field space. Index spaces

may be structured collections of multi-dimensional points (e.g. 1D, 2D, or 3D), or

unstructured (i.e. sets of unordered elements). With these abstractions regions are

able to describe a variety of data structures such as regular grids, unstructured meshes,

and graphs.

Regions are called logical data structures because unlike traditional data structures

such as arrays they are not allocated immediately in memory and may be moved as

necessary between nodes or even exist simultaneously on multiple nodes. At runtime

the data which is logically contained in a region is stored in zero or more physical

instances of the region. When a region is created, there will be zero instances of the
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region until the contents are initialized by calling a task with write privilege on the

region. Thereafter, there will always be at least one physical instance with valid data

somewhere in the machine. The mapping from logical regions to physical instances is

managed automatically by the Regent implementation and is not exposed to the user

at the level of the Regent source code. Instead, all performance decisions, including

control over the placement of physical instances, are made available to the user via a

mapping interface discussed further in Section 4.1.3.

2.3.2 Partitions

Partitions name sets of subregions, where subregions each name subsets of the elements

of a given parent region. Partitioning can be applied recursively, resulting in a tree-

shaped hierarchical decomposition of the data structures in an application. Typically,

partitions are used to name the subregions to be used by data-parallel subtasks, and in

a distributed machine the elements shared in common between overlapping subregions

will need to be communicated over the network. As a result, it is extremely important

for efficiency that Regent provide a set of expressive constructs for describing the sets

of elements that belong to the respective subregions of a partition.

Partitioning in Regent is very expressive; in general, the subregions of a partition

may contain arbitrary subsets of the elements of the region being partitioned. This

expressivity enables Regent to handle a great many classes of problems including

dynamic or unstructured data structures and to precisely identify the sets of elements

that are required for communication in such problems.

Regent features two distinct interfaces for partitioning. The first, based on colorings,

allows the user to construct an explicit map from colors (small integers) to sets of

points naming the contents of the respective subregions [68]. Examples of this style of

partition are shown in Figure 7.1; each of the regions is divided into three subregions

denoted by the colors red, orange and blue. In the case of the upper-left coloring, the

three colors map to non-overlapping sets of elements, thus the resulting partition is

disjoint. On the other hand, the bottom-right coloring assigns multiple colors to some

of the elements, resulting in an aliased partition where the subregions of the partition
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overlap. The disjoint or aliased property of a partition is important enough that it

must be named explicitly by the user and is tracked in the Regent type system. This

approach enables maximum flexibility in partitioning, but is also completely opaque

to the compiler, and thus any invariants on the subregions of the partition (most

importantly, disjointness) must be checked dynamically.

The second interface for partitioning provides an expressive sublanguage of opera-

tors for computing partitions [70]. An example of this style of partitioning is shown

in Figure 2.1, where the block and image operators are used to create a blocked

partition, and then to derive an image partition from the initial blocked partition via

some arbitrary function. In particular, this sublanguage has been carefully chosen to

permit various forms of static analysis on the partitioning code, which enables Regent

to check more partitioning invariants at compile-time. The sublanguage includes

operators for computing disjoint-by-construction partitions from e.g. field data stored

in a region (useful when calling the ParMetis [60] graph partitioning library), for

computing partitions through functions or the fields of regions (as in the image opera-

tor shown in the figure), and for common set operations (union, intersection, etc.).

These operations are sufficient for many classes of computations such as unstructured

meshes and graph applications which perform nearest-neighbor accesses on pointer

data structures.

In practice, these operators are often the simplest and most convenient way to

define partitions. For example, the equal partitioning operator divides a region into

a number of equal sized subregions. Figure 2.3a uses equal partitioning to divide a

2-dimensional grid into chunks of rows and columns (lines 7 and 8). These partitions

are trivially disjoint due to the nature of equal partitioning, thus the tasks called in

the loop on line 9 are able to run in parallel with respect to each other (respectively

line 10).

Note also that the partitions on lines 7 and 8 both come from the same parent

region. Regent allows a given region to be partitioned an arbitrary number of times.

Because the subregions of different partitions may overlap (as they in fact do in

Figure 2.3a), tasks on such subregions are considered to be interfering (if either

task writes its region). Thus, the tasks on line 10 depend on the tasks on line 9.



CHAPTER 2. PROGRAMMING MODEL 25

1 task f(r : region(. . . )) where reads writes(r) do . . . end
2

3−− Main Simulation:
4 var N = 8
5 var B = 2
6 var I = 0..N × 0..N
7 var R = 0..1 × 0..B
8 var C = 0..B × 0..1
9 var grid = region(I, . . . )

10 var rows = partition(equal, grid, R)
11 var cols = partition(equal, grid, C)
12 for i = 0, B do f(rows[{0, i}]) end
13 for j = 0, B do f(cols[{i, 0}]) end

(a) Code for an N × N region partitioned into B rows and B columns.

main

f(rows[{0, 0}]) f(cols[{0, 0}])

f(rows[{0, 1}]) f(cols[{1, 0}])

(b) Task tree for code sample.

grid

rows[{0, 0}] rows[{0, 1}] cols[{0, 0}] cols[{1, 0}]

rows cols

(c) Region tree for code sample.

Figure 2.3: A partitioning scheme for rows and columns of a grid.

Figure 2.3b shows the dependencies that result from the execution of this program.

Each dependency in the execution will result in data movement if the program is

executed on a distributed machine.
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2.3.3 Privileges

Privileges describe the ways in which a task may use a region argument: may the

task read, write, or reduce (with an associative and commutative reduction operator)

the elements of the region? Privileges are expressed in the declaration of a task and

enable both type checking and tractable and effective static and dynamic analysis of

Regent programs. The use of privileges in the language ensures that the compiler need

not attempt to analyze bodies of tasks in order to determine the effects of that task

(i.e. all possible reads and write a task may perform), as a task’s effects are completely

described by the task’s privileges. This also improves the performance of dynamic

analysis of Regent programs, as even when runtime information is available, it may

be prohibitively expensive to consider all possible pointer reads and writes in a task.

While regions and partitions are first-class values in Regent, privileges are not.

The privileges in a task’s declaration must completely describe the behavior of a task.

Thus, in general, any called subtasks (or other operations such as accesses to region

elements) must use a subset of privileges of the parent task. The only caveat to

this rule is that when a task creates an entirely new region, the task responsible for

creating the region gains full read-write privileges on the region. These rules enforce

a form of stack discipline in the usage of regions in Regent programs. It is worth

noting that this stack discipline also enables the composability of Regent programs; in

general it is always safe to call a task that may itself recursively call subtasks, as the

task will be held to the privileges it declares. This is in contrast to explicitly parallel

programming paradigms, where composability is not guaranteed to be safe when using

nested parallel constructs.

In the presence of partitions, this leads to an additional slight complication. In

Figure 2.3a at line 9, why is it ok for main to call f(rows[0, i])? The access to

rows[0, i] is safe because it is a subregion of grid, which was created on line 6 of

the same task (and therefore has read-write privileges available). This is in turn known

because rows[0, i] is a subregion of the partition rows, which itself partitions grid.

Regent tracks these relationships between regions via a region tree which captures

parent-child relationships between regions. Figure 2.3c shows the region tree the

compiler builds for the code sample. Region trees are a useful tool in the analysis of
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regions, and are discussed further in Section 3.2.

2.4 Features for Explicit Parallelism

In normal usage, Regent programs execute with sequential semantics. Regent also

provides features that extend Regent’s sequential programming model with explicitly

parallel features for synchronization and communication. Although these features

can be used for many purposes, they are most commonly used to reduce dynamic

analysis cost by manually (or automatically) sharding Regent programs over multiple

long-running tasks. In this way, a Regent program can achieve constant analysis

overhead while scaling to large numbers of nodes (and therefore large numbers of

tasks).

Chapter 3 describes the technique required to apply this transformation to a Regent

program automatically. In the remainder of this section, we consider the features

which make this transformation (whether automated or manual) possible.

2.4.1 Must-Parallel Epochs

In Regent, two tasks are permitted to run in parallel when they are mutually non-

interfering; however, in standard Regent there is no mechanism for specifying that

two tasks must run in parallel. This property is critical, for example, when two tasks

are involved in manual synchronization. In this case, a failure to execute the tasks

concurrently could result in deadlock. For example, consider a case where the available

memory limits Regent to running only one task at a time. If one task attempts to

synchronize with the other, the system will deadlock. (In sequential Regent code this

situation cannot occur because all synchronization is implicit and managed by the

system.) Thus, before allowing the user to write code with explicit synchronization

and communication, Regent must first provide a way to specify when tasks must run

in parallel.

A must-parallel epoch specifies a set of tasks which must run in parallel. These tasks

must be mutually non-interfering. Some additional techniques described below permit
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tasks to be non-interfering even when multiple tasks in a must-parallel epoch request

write privilege on the same region. Non-interference is required so that the tasks can

be scheduled simultaneously by the runtime. To avoid a resource deadlock as described

above, all resource constraints for the tasks must also be satisfied simultaneously. This

places some constraints on the mapping of tasks in a must-parallel epoch. Mapping is

discussed in more detail in Section 4.1.3.

2.4.2 Coherence

A must-parallel epoch requires that all tasks within the epoch be non-interfering.

However, under Regent’s normal semantics, two tasks that request write privilege on

the same region are necessarily interfering. Thus, in order to write explicitly parallel

programs in Regent it is necessary to relax this constraint.

Coherence modes specify the degree of consistency required of region arguments

two tasks. Regent provides four coherence modes:

• Exclusive coherence is the default and follows Regent’s standard sequential

semantics. A sequence of tasks with exclusive coherence are guaranteed to

execute in a manner which is indistinguisahble from sequential execution.

• Atomic coherence permits tasks to be reordered. Two tasks with atomic coher-

ence can execute in either order, but must still execute one at a time.

• Simultaneous coherence permits tasks to be executed concurrently. Region

arguments with simultaneous coherence guarantee shared-memory semantics,

although it is still the responsibility of the tasks to synchronize individual

memory accesses (e.g. with atomic instructions).

• Relaxed coherence permits tasks to be executed concurrently, and there are no

guarantees on the semantics of regions. All synchronization must be provided

by the user for safe execution.

The use of coherence modes other than exclusive results in a progressive relaxation

of the dependencies between tasks, and thus permit increasing degrees of reordering
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or concurrency among sibling tasks in order to achieve explicitly parallel execution.

The permitted interleavings of various combinations of coherence modes is described

in [68].

Note that Regent considers dependencies only between sibling tasks of a single

parent task. This is safe under Regent’s standard implicitly parallel semantics because

the children of distinct non-interfering parent tasks are themselves trivially non-

interfering (by the inclusion property of privileges described above). This enables,

among other things, a safe distributed analysis of task dependencies among non-

interfering tasks. However, in the presence of coherence modes other than exclusive,

this property can be violated. Regent makes no attempt to compute dependencies

between the grandchildren tasks of two sibling tasks using e.g. simultaneous coherence—

these dependencies become the user’s responsibility. Thus, when writing explicitly

parallel code, it is important for the user to consider what dependencies are or are

not being tracked automatically by Regent, and in cases where those dependencies

are not tracked automatically, to add manual synchronization and communication.

Among explicitly parallel Regent programs, the most commonly used coherence

mode is simultaneous. This mode permits concurrent execution, but requires shared-

memory semantics for any regions. This is a useful abstraction because it means that

two concurrently executing tasks both have access to a single instance of that region

in memory. Regent provides explicit copy operations that can be used to copy data to

and from instances of regions located on remote nodes.

2.4.3 Explicit Copies

In implicitly parallel Regent programs, copies between distant memories are scheduled

automatically whenever a true dependence exists between tasks that execute on distant

processors. However, when using simultaneous or relaxed coherence, the computation

of dependencies is relaxed, and therefore these copies must be scheduled manually by

the user (or by compiler transformation).

Regent supports explicit copy operations for this purpose. While copies are most

often used in explicitly parallel Regent programs, they are well-defined in the sequential
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case as well. A copy operation behaves like a task which reads elements from one

region (the source) and writes the values to corresponding elements of the destination

region. However, a copy is permitted to operate on regions stored in a remote memory,

whereas a task would only be permitted to operate on local copies of remote regions.

When used in combination with simultaneous or relaxed coherence, copy operations

must be explicitly synchronized with tasks that read or write their results, otherwise

data races can occur.

2.4.4 Phase Barriers

Explicit copies permit the movement of data between distant memories. However,

accesses to this data are not safe from data races unless additional synchronization

is used. The user is free to use whatever synchronization mechanism they prefer.

However, Regent offers a built-in synchronization mechanism, called a phase barrier,

which is attractive for this use case.

Phase barriers are a reusable, non-blocking, N -M producer-consumer synchro-

nization mechanism. Phase barriers are unlike MPI barriers in that the use of phase

barriers never blocks the currently executing task. Instead, operations (tasks or copies)

are given phase barriers as preconditions or postconditions. For example, a task may

be issued such that it does not start until the barrier has triggered. The task is

said to wait on the barrier, although this does not block execution in the traditional

sense. (There may generally be M of these waiting operations.) Similarly, a task may

be issued with the barrier as a postcondition, in which case it is said to arrive on

the barrier. The arrival is deferred until the task actually completes. A barrier is

considered to be triggered when N operations arrive at the barrier. The arrival count

may be modified at runtime as long as the task attempting to alter the arrival count

is itself responsible for at least one arrival. Similarly, the set of waiting tasks may be

entirely dynamic.

Barriers may be reused; the advance operation returns the subsequent generation

of the current barrier. Operations can be scheduled on barriers multiple generations

in advance without blocking the current task, allowing all operations to be scheduled
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asynchronously from the actual execution of the program.

2.4.5 Dynamic Collective

In many applications, it is necessary to perform reductions on the values of scalar

variables, for example to compute a new value for dt for the subsequent time step

in a simulation loop. In explicitly parallel, SPMD-style implementations of such

applications, this requires an additional synchronization primitive. A dynamic collective

is a variation on a phase barrier where the tasks which arrive on the collective are

permitted to supply values, which are then reduced and broadcast to all tasks waiting

on the collective. This allows a dynamic collective to achieve behavior similar to an

MPI Allreduce, except that as with phase barriers the use of a collective is simply as

a precondition or postcondition to a task and thus does not block the main thread of

execution of the application.
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Control Replication

Control replication is an optimization that transforms implicitly parallel programs

with sequential semantics into scalable and efficient SPMD code, even in the presence

of dynamically determined partitioning of data and communication patterns.

In the absence of this optimization, the overhead from launching increasingly large

sets of tasks comes to dominate execution time at large node counts. This is a direct

consequence of Regent’s sequential semantics: tasks must be analyzed in program

order in order to preserve the original semantics of the code. However, for repetitive

programs where the parallelism in the inner loop of task launches can be determined

statically, control replication can be used to avoid a sequential bottleneck in the

analysis of tasks. The goal of control replication is to automatically generate a set of

shards, or long-running tasks, which are each responsible for a subset of the tasks in the

original program. Shards execute in an explicitly parallel, SPMD-style fashion. Among

the subtasks launched by a single shard, Regent’s normal sequential semantics applies.

However, whenever a subtask of a shard depends on data produced by another shard,

the compiler must generate explicit synchronization and communication to preserve

that dependence. Thus, much of the focus in control replication is on discovering and

generating code for efficient synchronization and data movement.

While control replication relies on the compiler to statically determine when loops

are able to execute in parallel, the technique notably does not require the compiler

to statically determine the precise patterns of communication in the application. In

32
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particular, while performing control replication, the compiler need not be aware of

exactly which shards will need to communicate during the program’s execution, or

exactly what sets of elements they will exchange. Instead, control replication reasons

at the level of partitions, which have been explicitly identified by the user to name

the relevant sets of elements in the application. The use of language-level partitioning

enables control replication to be applied to classes of codes which have historically

been difficult to analyze and optimize in a compiler, such as unstructured mesh codes

where the exact structure of the mesh (and therefore communication pattern of the

application) cannot be known until the program’s input is read. The analysis of the

precise communication pattern of the application is deferred until runtime, when

the structure of the application’s partitions is known. Because this analysis is only

performed once, before the creation of shards, it does not impact the overall scalability

of long-running applications.

3.1 Target Programs

For the purposes of control replication we consider programs containing forall-style

loops of task calls such as those on lines 24-26 and 27-29 of Figure 3.1 (duplicated,

for ease of reference, from Figure 2.1). Control replication is a local optimization

and need not be applied to an entire program to be effective. The optimization is

applied automatically to the largest set of statements that meet the requirements

described below. In the example, control replication will be applied to lines 23-30 of

the program.

Control replication applies to loops of task calls with no loop-carried dependencies

except for those resulting from reductions to region arguments or scalar variables.

Arbitrary control flow is permitted outside of these loops, as are statements over scalar

variables.

No restrictions are placed on caller or callee tasks; control replication is fully

composable with nested parallelism in the application. The compiler analysis for

control replication need not be concerned with the contents of called tasks because the

behavior of a task is soundly approximated by the privileges in the task’s declaration.
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1 task TF(B : region(SU, . . . ), A : region(SU, . . . ))
2 where reads writes(B), reads(A) do
3 for i in SU do
4 B[i] = F(A[i])
5 end
6 end
7

8 task TG(A : region(SU, . . . ), B : region( , . . . ))
9 where reads writes(A), reads(B) do

10 for j in SU do
11 A[j] = G(B[h(j)])
12 end
13 end
14

15−− Main Simulation:
16 var U = ispace(0..N)
17 var I = ispace(0..NT)
18 var A = region(U, . . . )
19 var B = region(U, . . . )
20 var PA = block(A, I)
21 var PB = block(B, I)
22 var QB = image(B, PB, h)
23 for t = 0, T do
24 for i in I do
25 TF(PB[i], PA[i])
26 end
27 for j in I do
28 TG(PA[j], QB[j])
29 end
30 end

Figure 3.1: Regent version of program with aliasing.

Similarly, any caller task is completely agnostic to the application of control replication

because any possible transformation of the code must be consistent with the task’s

privileges.

The region arguments of any called tasks must be of the form p[f(i)] where p

is a partition, i is the loop index, and f is a pure function. Any accesses with a

non-trivial function f are transformed into the form q[i] with a new partition q such

that q[i] is p[f(i)]. Note here that we make essential use of Regent’s ability to
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A

PA[i] PA[j]

PA

B

PB[i]QB[j]

PBQB

Figure 3.2: Region tree for the example. Filled boxes are disjoint partitions.

define multiple partitions of the same data.

3.2 Region Trees

An analysis of aliasing between regions is critical for determining what tasks can be

permitted to execute in parallel. The semantics of Regent enables a straightforward

implementation of such an analysis based on the relationships between regions and

partitions. To determine whether two regions may alias, the compiler constructs a

region tree that describes these relationships. This tree is a compile-time adaptation

of the runtime data structure described in [13].

Figure 3.2 shows the region tree for the code in Figure 3.1. Note that regions in

this formulation are symbolic, that is, the indices used to identify subregions are either

constants or unevaluated loop variables. A dynamic evaluation of this program would

result in an expansion of this tree for the various iterations of the loops (resulting in

e.g. PA[0], PA[1], . . . , PA[NT-1] under the PA partition). However, the number of

iterations is not available at compile-time, making the symbolic version necessary.

The region tree is convenient because it provides a natural test to determine

whether any two regions may alias: For any pair of regions R and S, find the least

common ancestor A with immediate children R′ and S ′ (along the path to R and S,

respectively). If A is a disjoint partition and R′ and S ′ are indexed by constants, then

R and S are guaranteed to be disjoint regions at runtime; otherwise they may alias.

Region trees can be constructed by walking the program source from top to

bottom. Each newly created region becomes the root of a fresh region tree. Partitions

are inserted under the region they partition, and expressions that access subregions
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of partitions result in the corresponding subregion nodes, tagged with the index

expression used.

3.3 Program Transformation

In this section we describe the program transformations that comprise the control

replication optimization. Over the course of the optimization, the program is re-

structured to avoid the assumption of the sequential semantics that Regent normally

provides, such that the long-running shards that are finally generated operate with

explicit distributed memory, maintaining the coherence of regions explicitly via explicit

communication and synchronization.

Consider a subregion S and its parent region P . Semantically, S is literally a

subset of P : an update to an element of S also updates the corresponding element

of P . There are two natural ways to implement this region semantics. In the shared

memory implementation the memory allocated to S is simply the corresponding subset

of the memory allocated to P . In the distributed memory implementation, S and P

have distinct storage and the implementation must explicitly manage data coherence.

For example, if a task writes to region S, then the implementation must copy S (or at

least the elements that changed) to the corresponding memory locations of P so that

subsequent tasks that use P see those updates; synchronization may also be needed

to ensure these operations happen in the correct order. Intuitively, control replication

begins with a shared memory program and converts it to an equivalent distributed

memory implementation, with all copies and synchronization made explicit by the

compiler.

3.3.1 Data Replication

The first stage of control replication is to rewrite the program so that every region and

subregion has its own storage, inserting copies between regions where necessary for

correctness. We use the shorthand R1 ← R2 for an assignment between two regions:

R1 is updated with the values of R2 on the elements R1 ∩R2 they have in common.
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1−− Initialization:
2 for i in I: PA[i] ← A
3 for i in I: PB[i] ← B
4 for i in I: QB[i] ← B
5

6−− Transformed code:
7 for t = 0, T do
8 for i in I: TF(PB[i], PA[i])
9 for i, j in I × I: QB[j] ← PB[i]

10 for j in I: TG(PA[j], QB[j])
11 end
12

13−− Finalization:
14 for i in I: A ← PA[i]
15 for i in I: B ← PB[i]

(a) Code after data replication.

1−− Initialization:
2 for i in I: PA[i] ← A
3 for i in I: PB[i] ← B
4 for i in I: QB[i] ← B
5 var IQPB = {i, j|QB[j] ∩ PB[i] 6= ∅}
6

7−− Transformed code:
8 for t = 0, T do
9 for i in I: TF(PB[i], PA[i])

10 for i, j in IQPB: QB[j] ← PB[i]
11 for j in I: TG(PA[j], QB[j])
12 end
13

14−− Finalization:
15 for i in I: A ← PA[i]
16 for i in I: B ← PB[i]

(b) Code with intersections.

1−− Initialization:
2 for i in I: PA[i] ← A
3 for i in I: PB[i] ← B
4 for i in I: QB[i] ← B
5 var IQPB = {i, j|QB[j] ∩ PB[i] 6= ∅}
6

7−− Transformed code:
8 for t = 0, T do
9 for i in I: TF(PB[i], PA[i])

10 barrier()
11 for i, j in IQPB: QB[j] ← PB[i]
12 barrier()
13 for j in I: TG(PA[j], QB[j])
14 end
15

16−− Finalization:
17 for i in I: A ← PA[i]
18 for i in I: B ← PB[i]

(c) Code with synchronization.

1−− Shard task:
2 task shard(SI, SIQPB, PA, PB, QB)
3 where reads writes simult(PA, PB, QB) do
4 for t = 0, T do
5 for i in SI: TF(PB[i], PA[i])
6 barrier()
7 for i, j in SIQPB: QB[j] ← PB[i]
8 barrier()
9 for j in SI: TG(PA[j], QB[j])

10 end
11 end
12

13−− Initialization as before
14−− Transformed code:
15 var X = ispace(0..NS)
16 var SI = block(I, X)
17 must parallel epoch for x in X do
18 var SIQPB = {k, j|k, j ∈ IQPB ∧ k ∈ SU[x]}
19 shard(SI[x], SIQPB, PA, PB, QB)
20 end
21−− Finalization as before

(d) Code with shards.

Figure 3.3: Regent program at various stages of control replication.
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Figure 3.3a shows the core of the program in Figure 3.1 after three sets of copies have

been inserted. Immediately before the code to which the optimization is applied (lines

7-11), the various partitions are initialized from the contents of the parent regions

(lines 2-4). Symmetrically, any partitions written in the body of the transformed

code must be copied back to their respective parent regions at the end (lines 14-15).

Finally, inside the transformed code, writes to partitions must be copied to any aliased

partitions that are also used within the transformed code. Here PB and QB are aliased

(i.e. subregions of PB may overlap subregions of QB), so PB must be copied to QB on

line 9 following the write to PB on line 8. Note that PA is also written (on line 10) but

can be proven to be disjoint from PB and QB using the region tree analysis described

in Section 3.2, thus no additional copies are required.

3.3.2 Copy Placement

The placement of the copies in Figure 3.3a happens to be optimal, but in general

the algorithm described in Section 3.3.1 may introduce redundant copies and place

those copies suboptimally. To improve copy placement, we employ variants of partial

redundancy elimination and loop invariant code motion. The modifications required

to the textbook descriptions of these optimizations are minimal. Loops such as lines

8-10 of Figure 3.3a are viewed as individual statements operating on partitions. For

example, line 8 is seen as writing the partition PB and reading PA (summarizing the

reads and writes to individual subregions). Note that the use of standard compiler

techniques is only possible because of the problem formulation. In particular, aliasing

between partitions is removed by the data replication transformation in Section 3.3.1,

and program statements operate on partitions which hide the details of individual

memory accesses.

3.3.3 Copy Intersection Optimization

Copies are issued between pairs of source and destination regions, but only the

intersections of the regions must actually be copied. The number, size and extent of

such intersections are unknown at compile time; this is an aspect of the analysis that
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is deferred until runtime. For a large class of high-performance scientific applications,

the number of such intersections per region is O(1) in the size of the overall problem

and thus for these codes an optimization to skip copies for empty intersections is

able to reduce the complexity of the loop on Figure 3.3a line 9 from O(N2) to O(N).

Figure 3.3b shows the code following this optimization.

To avoid an O(N2) startup cost in comparing all pairs of subregions in the compu-

tation of intersections at line 5 in Figure 3.3b, we apply an additional optimization (not

shown in the figure). The computation of intersections proceeds in two phases. First,

we compute shallow intersections to determine which pairs of regions overlap (but not

the extent of the overlap). For unstructured regions, an interval tree acceleration data

structure makes this operation O(N logN). For structured regions, we use a bounding

volume hierarchy for this purpose. Second, we compute complete intersections between

these known-intersecting regions. Following the creation of shard tasks in Section 3.3.5

these operations are performed inside the individual shards, making them O(M2)

where M is the number of non-empty intersections for regions owned by that shard.

In practice, at 1024 nodes, the impact of intersection computations on total

running time is negligible, especially for long-running applications. Section 8.3.6

reports running times for the intersection operations of the evaluated applications.

3.3.4 Synchronization Insertion

When moving to a distributed-memory semantics, it is necessary to synchronize on

copies performed between remote nodes. A naive version of this synchronization is

shown in Figure 3.3c. The copy operations on line 11 are issued by the producer of the

data. Therefore, on the producer’s side only, copies follow Regent’s normal sequential

semantics. Explicit synchronization is therefore only required for the consumer. A

naive implementation of this synchronization could be performed with traditional

barriers as shown in Figure 3.3c. Two barriers are used in the example on lines 10 and

12. The first barrier on line 10 preserves write-after-read dependencies and ensures

that the copy does not start until all previous consumers of QB (i.e. TG tasks from the

previous iteration of the outer loop) have completed. The second barrier on line 12
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preserves read-after-write dependencies and ensures that subsequent consumers of QB

(i.e. subsequent TG tasks) do not start until the copy has completed.

As an additional optimization (not shown), the traditional barriers are replaced

with point-to-point synchronization via phase barriers (described in Section 2.4.4). In

particular, the tasks which require synchronization are exactly those with non-empty

intersections computed in Section 3.3.3. A simple dataflow analysis determines all

consumers of QB preceding the copy on line 11 and all those following; these tasks

synchronize with copies on line 11 as determined by the non-empty intersections

computed in IQPB. This form of synchronization in Regent has the additional benefit

that the phase barriers can be added as direct preconditions or postconditions to tasks

and therefore do not block the main thread of control as would a traditional barrier.

3.3.5 Creation of Shards

In the final stage of the transformation, control flow itself is replicated by creating a

set of shard tasks that distribute the control flow of the original program. Figure 3.3d

shows the code after the completion of the following steps.

First, the iterations of the inner loops for TF and TG must be divided among the

shards. Note this division does not determine the mapping of a task to a processor

for execution, which is discussed in Section 6.2. This simply determines ownership of

tasks for the purposes of runtime analysis and control flow. The assignment is decided

by a simple block partition of the iteration space on line 14. Second, the compiler

transforms the loops so that the innermost loops are now over iterations owned by

each shard, while the new outermost loop on line 15 iterates over shards.

Third, the compiler extracts the body of the shard into a new task on lines 2-11.

This task is called from the main loop on line 19. Note that the shard task requests

the use of simultaneous coherence (described in Section 2.4.2) in order to permit the

shards to execute in parallel, despite the conflicts between the read-write privileges of

the various tasks. The main task uses a must-parallel epoch (described in Section 2.4.1)

to assert that the tasks must be scheduled for parallel execution on the machine.
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3.4 Implementation

In discussing control replication, we have been largely concerned with a limited subset

of a Regent features. Most additional features of Regent are straightforward to

implement within control replication, though a couple warrant special attention.

3.4.1 Region Reductions

Control replication permits loop-carried dependencies resulting from the application of

associative and commutative reductions to region arguments of tasks. These reductions

require special care in an implementation of control replication.

The partial results from the reductions must be stored separately to allow them to

be folded into the destination region, even in the presence of aliasing. To accomplish

this, the compiler generates a temporary region to be used as the target for the

reduction and initializes the contents of the temporary to the identity value (e.g., 0 if

the reduction operator is addition). The compiler then issues special reduction copies

to apply the partial results to any destination regions which require the updates.

3.4.2 Scalar Reductions

In control replication, scalar variables are normally replicated as well. This ensures, for

example, that control flow constructs behave identically on all shards in a SPMD-style

program. Assignments to scalars are restricted to preserve this property; for example,

scalars cannot be assigned within an innermost loop (as the iterations of this loop will

be distributed across shards during control replication).

However, it can be useful to perform reductions on scalars, for example, to compute

the dt for the next time step in a code with dynamic time stepping. To accommodate

this, control replication permits reductions to scalars within inner loops. Scalars

are accumulated into local values that are then reduced across the machine with a

dynamic collective (described in Section 2.4.5), an asynchronous collective operation

that supports a dynamically determined number of participants. The result is then

broadcast to all shards.
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Figure 3.4: Region tree with hierarchical partitions.

3.4.3 Hierarchical Region Trees

Regent permits recursive partitioning of regions. Among many other uses, this feature

enables a common idiom in which the programmer constructs a top-level partition

of a region into two subsets of elements: those which are guaranteed to never be

involved in communication, and those which may need to be communicated. This

design pattern, in combination with the region tree analysis described in Section 3.2,

enables an important communication optimization that reduces data movement for

distributed-memory execution, and also substantially reduces the cost of the dynamic

computation of intersections described in Section 3.3.3.

Figure 3.4 shows a possible modification to the region tree from Figure 3.2 that

uses this optimization. The top-level region B has been partitioned into two subregions

that represent all the private elements (i.e. those never involved in communication)

and ghost elements (i.e. those that are involved in communication). The new partition

SB represents the subset of elements of the original PB partition involved in communi-

cation. Similarly, the new PB and QB partitions have been intersected with the regions

all private and all ghost.

Notably, the top-level partition in this new region tree is disjoint, and thus by

consulting the region tree the compiler is able to prove that the partition PB is disjoint

from QB and SB. As a result, the compiler is able to prove that the subregions of PB are

not involved in communication (as they are provably disjoint from all other subregions),

and can avoid issuing copies for PB. Additionally, because PB has been excluded from
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the set of partitions involved in communication, the compiler is able to skip any

intersection tests with PB and other partitions. As in most scalable applications the

set of elements involved in communication is usually much smaller than those not

involved in communication, so placing the private data in its own disjoint subregion

can reduce the runtime cost of computing intersections.

An application of this technique to a more full-featured application code is described

in detail in Section 7.2.



Chapter 4

Translation to Legion

Regent programs may be highly dynamic: in particular, the precise dependencies

between tasks, sets of elements contained in regions (and overlapping elements between

pairs of regions), and the scheduling of tasks on processors and placement of regions

in distributed memories may be dynamic and not amenable to static analysis. To

leverage this dynamic behavior, Regent targets a dynamic runtime for task-based

parallelism, Legion [13].

Legion, though also a task-based system, provides lower-level abstractions compared

to Regent. Several features which are implicit in Regent, such as the management

of the memory associated with a region, are more explicit in Legion. The Regent

compiler is responsible for managing the translation into this more explicit model.

In this chapter we describe the relevant features of the Legion runtime system and

how they differ from Regent, and then present a translation from the Regent language

to Legion runtime APIs. Note that several aspects of the translation described in this

chapter result in potentially suboptimal performance. These are addressed through

further optimizations described in Chapter 5.

4.1 Features of the Legion Runtime System

Legion is implemented as a software out-of-order processor. Tasks (like instructions) are

scheduled for possibly out-of-order execution on a set of physical resources. Similarly,

44
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regions (like registers) are virtualized. A given region may be mapped to zero or more

physical instances in memory at any given point in the program execution. Thus in

Legion there is a distinction between between logical and physical abstraction layers

in Legion that does not exist in Regent. Separating the logical and physical levels

permits important patterns, such as having multiple copies of read-only data, to be

expressed directly.

The Legion C++ API allows programmers to write efficient task-based programs

that run out-of-order, asynchronously, and in a distributed fashion. However, because

Legion is written in C++, which does not understand the semantics of tasks and

regions, the Legion API is forced to expose functionality beyond the logical layer of the

programming model. Programmers must generally write Legion programs with some

awareness of both the logical and physical levels. In contrast, Regent only exposes the

logical level, and the compiler is responsible for managing the translation from logical

to physical abstractions.

As a running example used throughout this chapter, Figures 4.1 and 4.2 show

excerpts from an implementation of the proxy application PENNANT in Regent and

Legion. The implementation of PENNANT is described in more detail in Chapter 7.

For the purposes of the present discussion, these code comparisons serve to highlight

the substantial differences in usability between Regent and Legion. The specific

aspects of the code samples are discussed along with the relevant features, below.

4.1.1 Regions

A region is the product of an index space (set of indices) and a field space (set of

fields). Like an array of structs in a traditional language, a region holds a value for

every index in the index space, for each field in the field space. At any given point in

the apparently sequential execution of the program, a region can be as a snapshot

mapping indices to values. However, unlike an array in a conventional programming

language, there is not necessarily a one-to-one mapping between a region and its

representation in physical memory.

As noted above, a region may correspond to zero or more physical instances (actual
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1 task adv pos full(points : region(point), dt : double) where
2 reads(points.{x0, u0, f, maswt}), writes(points.{x, u})
3 do
4 var fuzz = 1e−99
5 var dth = 0.5 ∗ dt
6 for p in points do
7 var pap = (1.0 / max(p.maswt, fuzz))∗p.f
8 var pu = p.u0 + dt∗pap
9 p.u = pu

10 p.x = p.x0 + dth∗(pu + p.u0)
11 end
12 end

(a) PENNANT leaf task implementation in Regent.

1 void adv pos full(const Task ∗task,
2 const std::vector<PhysicalRegion> &regions,
3 Context ctx, HighLevelRuntime ∗runtime)
4 {
5 PhysicalRegion points0 = regions[0];
6 Accessor<double, SOA> points x0 x(points0, PX0 X);
7 Accessor<double, SOA> points x0 y(points0, PX0 Y);
8 Accessor<double, SOA> points u0 x(points0, PU0 X);
9 Accessor<double, SOA> points u0 y(points0, PU0 Y);

10 Accessor<double, SOA> points f x(points0, PF X);
11 Accessor<double, SOA> points f y(points0, PF Y);
12 Accessor<double, SOA> points maswt(points0, PMASWT);
13 PhysicalRegion points1 = regions[1];
14 Accessor<double, SOA> points x x(points1, PX X);
15 Accessor<double, SOA> points x y(points1, PX Y);
16 Accessor<double, SOA> points u x(points1, PU X);
17 Accessor<double, SOA> points u y(points1, PU Y);
18 Future f0 = task−>futures[0];
19 double dt = f0.get result<double>();
20 double fuzz = 1e−99;
21 double dth = 0.5 ∗ dt;
22 IndexIterator it(points0.get logical region().get index space());
23 while (it.has next()) {
24 size t count;
25 ptr t start = it.next span(count);
26 ptr t end(start.value + count);
27 for (ptr t p = start; p < end; p++) {
28 double frac = (1.0 / max(points maswt.read(p), fuzz));
29 double pap x = frac ∗ points f x.read(p);
30 double pap y = frac ∗ points f y.read(p);
31 double pu x = points u0 x.read(p) + dt ∗ pap x;
32 double pu y = points u0 y.read(p) + dt ∗ pap y;
33 points u x.write(p, pu x);
34 points u y.write(p, pu y);
35 points x x.write(p, points x0 x.read(p) +
36 dth∗(pu x + points u0 x.read(p)));
37 points x y.write(p, points x0 y.read(p) +
38 dth∗(pu y + points u0 y.read(p)));
39 }
40 }
41 }

(b) PENNANT leaf task implementation in Legion C++ API.

Figure 4.1: PENNANT leaf tasks in Regent and C++.
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1 var dt, dtmax = conf.dtmax, conf.dtmax
2 var dthydro = 0.0
3 var time, tstop = 0.0, conf.tstop
4 while time < tstop do
5 dt = calc global dt(dt, dtmax, dthydro, time, tstop)
6 for i = 0, conf.npieces do
7 adv pos full(points all private p[i], dt)
8 end
9 for i = 0, conf.npieces do

10 dthydro min= calc dt hydro(zones all p[i], dt, dtmax)
11 end
12 time += dt
13 end

(a) Excerpt from PENNANT main simulation loop in Regent.

1 Future dt = Future::from value<double>(conf.dtmax);
2 Future dthydro = Future::from value<double>(0.0);
3 double dtmax = conf.dtmax;
4 Future time = Future::from value<double>(0.0);
5 double tstop = conf.tstop;
6 runtime−>unmap region(ctx, pr points all private);
7 while (time.get value<double>() < tstop) {
8 double buffer[2];
9 buffer[0] = dtmax;

10 buffer[1] = tstop;
11 TaskArgument global args0((void ∗)&buffer[0], sizeof(buffer));
12 TaskLauncher launcher0(CALC GLOBAL DT, global args0, ArgumentMap());
13 launcher0.add future(dt);
14 launcher0.add future(dthydro);
15 launcher0.add future(time);
16 dt = runtime−>execute task(ctx, launcher0);
17
18 Domain domain = Domain::from rect<1>(
19 Rect<1>(Point<1>(0), Point<1>(conf.npieces − 1)));
20 IndexLauncher launcher1(ADV POS FULL, domain, TaskArgument(), ArgumentMap());
21 launcher1.add region requirement(
22 RegionRequirement(points all private p, 0 /∗ identity projection ∗/, READ ONLY, EXCLUSIVE, points all private));
23 launcher1.add field(0, PX0 X);
24 launcher1.add field(0, PX0 Y);
25 launcher1.add field(0, PU0 X);
26 launcher1.add field(0, PU0 Y);
27 launcher1.add field(0, PF X);
28 launcher1.add field(0, PF Y);
29 launcher1.add field(0, PMASWT);
30 launcher1.add region requirement(
31 RegionRequirement(points all private p, 0 /∗ identity projection ∗/, READ WRITE, EXCLUSIVE, points all private));
32 launcher1.add field(1, PX X);
33 launcher1.add field(1, PX Y);
34 launcher1.add field(1, PU X);
35 launcher1.add field(1, PU Y);
36 launcher1.add future(dt);
37 runtime−>execute index space(ctx, launcher1);
38
39 TaskArgument global args2((void ∗)&dtmax, sizeof(double));
40 IndexLauncher launcher2(CALC DT HYDRO, domain, global args2, ArgumentMap());
41 launcher2.add region requirement(
42 RegionRequirement(zones all p, 0 /∗ identity projection ∗/, READ ONLY, EXCLUSIVE, zones));
43 launcher2.add field(0, ZDL);
44 launcher2.add field(0, ZVOL0);
45 launcher2.add field(0, ZVOL);
46 launcher2.add field(0, ZSS);
47 launcher2.add field(0, ZDU);
48 launcher2.add future(dt);
49 dthdyro = runtime−>execute index space(ctx, launcher2,
50 REDOP ADD DOUBLE);
51
52 TaskLauncher launcher3(ADD DOUBLE,
53 TaskArgument(), ArgumentMap());
54 launcher3.add future(time);
55 launcher3.add future(dt);
56 time = runtime−>execute task(ctx, launcher3);
57 }

(b) Excerpt from PENNANT main simulation loop in Legion C++ API.

Figure 4.2: Excerpt from PENNANT main simulation loop in Regent and C++.
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instantiations of the region in memory). However, the full correspondence of a region

involves some additional layers of complexity that must be managed by the application:

• One logical region

• corresponds to zero or more region requirements

• which each correspond to one or more physical instance

• containing one or more fields.

• And each field of a physical instance corresponds to exactly one accessor.

A region requirement (RegionRequirement in the Legion API) is the fundamental

unit of privilege in Legion. A region requirement names a region, a privilege (read,

write, etc.), and a set of fields. Most Legion APIs that involve an effect on a regions

actually take region requirements. For example, the API for launching a task takes

a list of region requirements rather than regions. Legion’s internal mechanisms for

tracking privileges operate at the level of region requirements. Examples of region

requirements can be seen in Figure 4.2b lines 21-35 and 41-47; they are also implicit

in the regions argument of Figure 4.1b.

Each region requirement corresponds to one or more physical instances. Physical

instances are the actual unit of allocated memory in the system. As the objects

contained inside regions may consist of multiple fields, a physical instance contains

memory for a set (or subset) of fields of the elements in the region.

Each physical instance has a layout in memory: struct-of-arrays (SOA), or array-of-

structs (AOS), etc. In certain cases, it may be beneficial to use different layouts for

different sets of fields. To support this, Legion permits a region requirement to be

mapped to multiple physical instances.

Finally, accessors are used to actually access the data contained in a physical

instance. In C++ API, the Accessor type makes extensive use of C++ templates

in order to amortize the cost of computing values such as strides and base pointers

for accessing the physical instance, and to provide constant-folding of compile-time
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information about instance layouts (such as strides, in certain layouts). These can be

seen in Figure 4.1b lines 6-17.

A Legion programmer is responsible for managing the correspondence of a region

into its constituent parts, and packing those pieces as necessary to call tasks, etc.

Furthermore, when a parent task calls a subtask with a subregion of one of its regions,

Legion requires that the programmer explicitly specify the parent region on which

the parent task has privileges. Thus the programmer is responsible for tracking all

parent-child relationships between regions. As described in Section 4.2.1, in Regent

these correspondences are managed transparently by the compiler.

4.1.2 Index and Region Trees

In Legion, the distinction between an index space and a region on that index space is

more explicit than it is in Regent. This distinction is particularly noticeable when

partition a region into subregions. In Legion, partitioning is performed only on index

spaces. Partitioning can be seen as dividing an index space into a tree of subspaces.

This tree is mirrored implicitly in the region tree. That is, creating a partition of an

index space implicitly creates a parallel partition on all regions of the index space.

4.1.3 Mapping

Regions are logical containers and must be mapped to one or more physical instances

prior to use. Mapping can be critical to performance, and a correct decision can

depend on architecture or application-specific factors. As such, Legion chooses to

expose these decisions to the user via the Mapper API. The Mapper object is queried

during the program execution whenever the runtime needs to map a region to a

physical instance. Legion also provides a default implementation of the mapper that

uses heuristics to provide a reasonable out-of-the-box experience.

There is an additional issue with respect to mapping and subtasks. By default, at

the start of a task Legion automatically maps each region used by the task, and when

the task ends each of those regions is unmapped. Before launching a subtask a parent

task must also unmap (release access to the memory of) any region that the child task
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needs to use. As the parent and child execute concurrently, this is needed to avoid

data races due to concurrent access to regions shared between the parent and child.

By default, the Legion runtime unmaps all of the parent’s regions before calling a child

and remaps them when the child terminates. While this default behavior guarantees

correct execution, if the parent and child have interfering privileges for a region (e.g.,

both can write the region) then the parent will block until the child terminates, as the

parent’s call to map the region following the call must block until the child finishes.

Blocking in the parent task is potentially harmful to performance as it prevents the

parent task from running ahead of execution and thus restricts the parallelism which

is available for Legion to exploit in the execution of the application. In the worst case,

excessive mapping and unmapping can serialize the execution of the application.

For optimal performance, Legion programmers must explicitly manage the mapping

of regions through explicit map and unmap calls provided by the Legion interface.

By unmapping a region, the programmer notifies the runtime that the data in that

region is not required by the parent task until a corresponding map call is issued. The

map call causes the runtime to query the Mapper object to choose a new (or existing)

physical instance, and then blocks the parent task until that instance becomes valid.

In typical usage, programmers unmap all regions before entering a main loop, and

remap all regions once the loop completes, which ensures that the runtime can avoid

blocking when issuing tasks within that loop. An example of such an unmap call can

be seen in Figure 4.2b line 6.

4.1.4 Tasks

Tasks are the fundamental unit of control in both Regent and Legion. Tasks are issued

in program order, exactly as they are written in the text, and every possible program

execution is guaranteed to be indistinguishable from serial execution. As discussed

in Section 4.1.1, tasks specify the regions they use via a set of region requirements

(consisting of a region, privilege, and set of fields).

Legion performs an analysis to determine when tasks interfere (i.e. perform conflict-

ing operations on the same or aliased regions), building a dependence graph over the
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tasks in the program as the program executes. Legion’s dynamic dependence analysis

imposes a cost with every task launched. This cost is proportional to the number of

region requirements used to describe a task, and thus the calling convention used for

tasks has a non-trivial impact on the overhead incurred by the Legion runtime.

To ensure that the runtime overhead stays off the critical path as much as possible,

the Legion runtime is itself asynchronous and performs its analysis in parallel to

the execution of the application [13]. The goal is for the runtime to run ahead of

the application, issuing tasks and analyzing task interference in advance of when

those tasks can actually run. Thus the overhead of the runtime analysis of tasks

only becomes a factor in the overall execution time of the application if the total

duration of the runtime analysis exceeds the total running time of the application, or

if a blocking operation causes the analysis to be exposed on the critical path of the

application. Pipeline stalls, blocking operations, and excessive analysis costs can all

cause the runtime to fall behind relative to the application and hurt the performance

of the application. Legion mitigates these issues by providing more sophisticated

abstractions which can result in higher performance, but also have more complex

semantics. These features are discussed below.

Leaf Tasks

Task execution and analysis in Legion is pipelined. In general, a task must complete

a pipeline stage before it passes to the next stage. If a given stage stalls for any

reason, that task and any tasks that depend on it also stall. Mapping, described in

greater detail in Section 4.1.3, is one pipeline stage. When a task is mapped, physical

instances are chosen for each of its region requirements.

Because tasks can execute subtasks, Legion must wait for all subtasks to map

before it can consider a parent task to have completed mapping. In general the only

way to know that a parent task cannot issue more subtasks is if the parent task has

terminated. This can result in unnecessary pipeline stalls when the task in question is

one that never intends to launch any subtasks.

Legion allows users to annotate tasks as leaf tasks if they launch no subtasks, a

mechanism inherited from Sequoia [35]. In Legion, the runtime considers the mapping
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of a leaf task to be complete once the task itself is mapped (even if the task has not

begun execution), avoiding unnecessary pipeline stalls for dependent operations. Users

of the Legion C++ API must manually annotate leaf tasks to avoid such stalls.

Futures

Tasks can produce results in one of two ways: via direct return values, or as a side-

effect on a region argument. In Legion, operations can block whenever a parent task

consumes the direct return value produced by one of its child tasks. Since blocking a

parent task is undesirable, the Legion runtime provides ways of avoiding blocking on

both kinds of task results.

When a task produces a direct return value, Legion returns immediately with a

future representing the not-yet-produced result of the task. Parent tasks can block

to obtain the value of a future, but Legion also supports passing futures as inputs to

other subtasks without blocking in the parent task. In this way, the programmer can

describe the flow of values between subtasks without blocking, allowing the runtime

to run further ahead and hide runtime analysis costs. Futures are visible in the C++

sample codes in Figure 4.1b lines 18-19 and Figure 4.2b lines 13-15, 36, 48, and

54-55. Note that in tasks that take both future and immediate arguments, such as

calc global dt in Figure 4.2b on lines 8-16, the future arguments must be explicitly

filtered and added to the task launch separately from immediate arguments; the user

is responsible for maintaining the consistency of this code with the implementations

of the tasks themselves.

Index Launches

Even when execution does not stall in the runtime or block in the application, if

the throughput of the dynamic analysis itself is not sufficient, the runtime can still

fall behind. Legion provides a number of features that can be used to mitigate the

cost of this analysis. Most notably, an index space task launch (or index launch) can

substantially reduce the cost of analysis of a repetitive set of tasks.

Conceptually, an index launch simply represents a loop of task launches. Figure 4.2a
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lines 6-8 and 9-11 show two examples of Regent loops that can be transformed into

index launches. The corresponding C++ code is shown in Figure 4.2b lines 18-37

and 39-50. Because the tasks in an index launch are all similar, the cost of analyzing

these tasks can be reduced. Note that the Legion runtime places several structural

restrictions on index launches to ensure that they are well-behaved:

1. A launch domain (an index space) must be explicitly specified. One task is

launched for each index in the launch domain.

2. Arguments to all tasks in the index launch must be computed outside the launch,

guaranteeing that arguments are available and that no arguments depend on

side-effects from tasks within the launch.

3. Futures, if any, are added to the launch as a whole, not to individual tasks.

4. Region requirements can be in one of two forms:

• Individual region requirements name a single region to be used by all tasks

in the launch.

• Partition requirements name a subregion of the partition per task in the

launch (such as p[i] for each index i in the launch domain). If the index

expression is non-trivial (e.g. p[f(i)] for a non-identify function f), then

the user must supply a projection functor implementing f.

5. Because an index launch implies parallel execution, all the tasks must be non-

interfering. That is, the region requirements must be mutually disjoint, or use

non-interfering privileges (read-only, or reductions).

6. If tasks within the launch return a value, then the launch as a whole is allowed

to either return a map with all the resulting futures, or to reduce the futures

into a single value via a user-specified reduction operator.

When executing an index launch, the runtime still performs dynamic checks to

ensure that the tasks within the launch are non-interfering. However, Legion is able
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to amortize these checks across the entire index launch instead of performing them

individually. Note that, while this reduces the cost of analysis for N tasks to O(1), the

overall cost of launching N tasks is still O(N) because a single node is still responsible

for all tasks. In particular, on a distributed-memory machine, this requires one node to

send N messages to other nodes informing them of what tasks to execute. While index

launches improve the scalability of Regent programs, control replication, described in

Chapter 3 is generally required for scaling to very large numbers of nodes.

4.1.5 Variants

Instance layouts can have a significant impact on the performance of tasks. Further-

more, the optimal instance layout (and corresponding implementation of a task) may

depend on the architecture of the machine. Legion permits multiple variants of a task

to be registered simultaneously. During execution, the mapper is able to dynamically

select the appropriate variant to execute for each task.

Variants are distinguished from each other by a set of layout constraints describ-

ing the layout that the variant expects. In general, high-performance variants are

expected to specify their layout constraints in great detail so that the implementation

can constant-fold information such as the strides of the physical instances into the

implementation code. Legion programmers are responsible for supplying variants,

describing the associated layout constraints, and ensuring that the layout constraints

match the expectations of the variant implementations.

4.2 Code Generation from Regent into Legion

Regent only exposes the logical aspects of the programming model to the user. Features

such as physical instances, futures, and variants are managed transparently by the

compiler. In Regent, unlike in Legion, users really can think of the program as simply

a sequential code with tasks as function and region as arrays of structs.

The initial translation from Regent to Legion does not attempt to be optimal.

Instead, a number of features are provided by subsequent optimizations to the code.
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These optimizations are described in detail in Chapter 5.

4.2.1 Regions

The constituent parts of regions, index spaces and field spaces, must be managed

through a series of API calls in Legion. In Regent, these are much more streamlined.

Index spaces are created automatically for each region based on the size of the region.

Field spaces are created automatically from the element type of the region. In cases

where a region contains a nested struct (e.g. a struct containing a struct), Regent

automatically flattens the nested struct in the resulting field space; Legion does not

support nested fields.

When partitioning a region, the corresponding index space is implicitly partitioned;

Regent hides the parallel index space and region trees from the user.

Regent manages the correspondence between regions, region requirements, physical

instances, and accessors transparently on behalf of the user. This mapping is tracked

in the code generator of the compiler and thus imposes no additional runtime overhead.

These differences are illustrated in the difference between Figure 4.1a and Figure 4.1b.

When creating region requirements, Regent can automatically determine the

correct parent region from which to derive privileges by consulting the compiler’s

static representation of the region tree for the task, along with the task’s declared

privileges. Region trees were previously discussed in Section 3.2.

4.2.2 Variants

Instance layouts can have a significant impact on the performance of Regent tasks. For

performance, Regent generates high-performance variants of each task that are heavily

optimized for specific instance layouts. By default, Regent generates a single variant

for each task that assumes a default instance layout appropriate for vectorization

and for constant-folding of the strides of physical instances. In future work we are

interested in investigating the use of a static mapping language, which parallels the

Legion mapping API, to allow the user to generate additional variants of tasks in

Regent.
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Each variant of a Regent task only works for a specific layout. Regent generates

the appropriate layout constraints for Legion automatically to ensure that Legion

generates instances in the correct layout for each task.

4.2.3 Task Calling Convention

Regent tasks are simply functions that operate on region arguments, and task calls

are written as normal function calls.

In Legion, task calls are somewhat more involved. The various kinds of arguments—

regions, futures, and immediates—must be separated and are attached separately

to the task launch. Region arguments to tasks must be decomposed into region

requirements where each region requirement is a tuple of a region, privilege, and a set

of fields. As the cost of dynamic analysis in Legion is a function of the total number

region requirements, rather than the number of task launches, the calling convention

used has an impact on the cost of analysis of tasks. A naive approach, which simply

builds a region requirement per region, privilege, and field, would have cost on the

order of O(RF ) where R is the number of regions used in task arguments and F is

the average number of fields used per region. Instead Regent uses an optimized calling

convention below which reduces this cost to O(R), which is the optimum.

Regent’s calling convention operates as follows. Regent enumerates the privileges

and fields declared in the target task. For each parameter, Regent maps the parameter

region to the actual argument being passed to the task. Regent then collects 3-

tuples containing (region, privilege, field) for all region arguments, and sorts these

lexicographically. Regions are ordered by the position of the parameter in the original

task. Privileges are ordered in the following way: reads, then writes, then reductions

by reduction operator. Fields are ordered by the position of the field in the original

field space. This ensures a stable, deterministic, and predictable ordering to region

requirements. Regent then applies a group-by operator (borrowed from relational

algebra) to group region requirements by region and privilege. This produces a set

of fields for each region and privilege. Finally, due to a requirement in the Legion

runtime, reduction privileges are split out into individual requirements, one per field.
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Note that the predictability and determinism of the calling convention is also a

necessary precondition to designing a useful foreign function interface for Regent.

Such an interface is described in more detail in Section 6.3.

Futures also require some attention. Regent tasks may generally be called with

either future or immediate (non-future) arguments. In the Legion C++ API, futures

are passed separately from immediates, and the coordination of which arguments

are passed in which mode is left to the programmer. Although it would be possible

in the Regent compiler to generate different variants of a task for each call site,

such an approach could potentially lead to an exponential increase in the amount of

code compiled. Instead, Regent follows a calling convention where either futures or

immediates can be passed to the same task. To support both future and immediate

arguments to the same task, Regent tasks use an extra immediate argument to encode

which subsequent arguments are being passed as futures. This argument is a bitmask

where each bit represents a subsequent argument, if the bit is set to 1 then the argument

is passed as future, otherwise 0. When unpacking arguments, Regent maintains a

count of the number of future arguments unpacked up to that point, and increments

the count each time a future argument is unpacked.

The correspondence between Regent and hand-written Legion code can be seen,

for example, in Figure 4.2a line 5 and Figure 4.2b lines 8-16. The primary difference

between the hand-written Legion code and the Regent calling convention is that the

hand-written Legion code does not use an additional bitmask field to describe which

parameters are passed in futures.

4.2.4 Additional Optimizations

Other aspects of optimal code generation are left to subsequent optimizations. The

placement of map and unmap calls is discussed in Section 5.1, declaration of leaf tasks

in Section 5.2, generation of index launches in Section 5.3, and futures in Section 5.4.
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Optimizations

As illustrated in Section 4, Regent simplifies the Legion programming model and

provides a higher level of abstraction that is concerned only with logical, rather than

physical, constructs. The Regent compiler is able to manage the correspondences

between logical and physical constructs in a way that achieves performance comparable

to a hand-written Legion C++ implementation, and significantly better than a naive

compiler. This section describes a number of optimizations that together allow the

Regent compiler to achieve performance comparable to hand-tuned code written to

the Legion C++ API.

5.1 Mapping Elision

Regent frees programmers of the burden of managing physical instances of regions by

statically computing correct and optimal placements of map and unmap calls. The

Regent type system guarantees that the compiler has complete information about

what regions can be accessed within any task. The compiler uses this information

to perform a flow-sensitive analysis over the AST to determine the spans over which

regions are used and inserts the map and unmap calls at the boundaries of spans

when switching between usage in a parent and a child task. Redundant map and

unmap calls resulting from repeated task launches are eliminated entirely, and the

placements of map and unmap calls is chosen such that the blocking map calls occur
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as late as possible in the program. In the case where a region is not used at all within

a task, the compiler issues a single unmap call at the top of the task and leaves the

region unmapped for the entire duration of the task’s execution. In contrast, the

Legion runtime, in the absence of manually placed calls to map and unmap, is forced

to continue to map and unmap the region throughout the task’s execution.

5.2 Leaf Tasks

As discussed in Section 4.1.4, correctly identifying leaf tasks is an important opti-

mization for Legion programs, as otherwise the Legion runtime must consider the

mapping of a task still in progress until it can be certain all child tasks have mapped

(which is only known to be the case when the task itself finishes executing, as a task

can in general continue to launch subtasks as long as it is still executing). Regent

automatically infers at compile time which tasks are leaf tasks. The compiler knows

all call targets and is therefore able to determine, using a flow-insensitive analysis,

whether a given task calls any subtasks. These annotations are guaranteed to be

correct and precise, in contrast to the user-provided leaf task annotations in Legion.

5.3 Index Launches

Whenever possible, the Regent compiler transforms loops of task launches into index

space task launches. The analysis for this optimization proceeds in multiple phases:

1. The compiler begins with a structural analysis of the code to determine whether

the loops in question are eligible for transformation into an index space launch.

Currently all simple loops containing single task launches are considered eligible.

2. For each loop, the compiler determines whether the body of the loop (aside

from the task call itself) is side-effect free. In particular, the loop body must

not read or modify data that the task itself might read or modify. Doing so

would introduces a loop-carried dependence and shows the loop is not fully

parallelizable.



CHAPTER 5. OPTIMIZATIONS 60

3. For each argument to the task launch, the compiler determines whether the

argument in question is eligible to be transformed into an argument for an index

task launch. Arguments must be one of:

• a non-region value;

• a region value that is provably loop invariant;

• a region value that is provably an analyzable function of the loop index;

i.e., it is an expression such as a partition access p[i] indexed by the loop

variable i.

4. The compiler then performs a static variant of Legion’s dynamic non-interference

analysis. For each region-typed argument, the compiler determines whether it

is statically non-interfering with other region-typed arguments. As with the

dynamic analysis, the compiler has several dimensions along which to prove

non-interference:

• disjointness, either because the region types are incompatible, or because

the compiler can statically prove disjointness through the static region tree

(Section 3.2);

• field disjointness, because the arguments use different fields; or

• privileges, because both arguments use compatible privileges (e.g. both

read-only, or both reductions with the same reduction operator).

If the analysis determines that a task launch is eligible for optimization, the

compiler emits the code to perform the index task launch.

It is worth noting that while this optimization looks similar in its basic outlines

to forall-style constructs in other languages and programming models, it behaves

quite differently in many respects. In particular, when index launch optimization

fails (because any of the properties above cannot be established), that does not imply

the resulting code runs sequentially. The Legion runtime will perform its standard

dynamic analysis, and will parallelize all tasks that are dynamically non-interfering,

regardless of whether the compiler performs the optimization or not. This optimization
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simply allows the runtime to amortize the dynamic analysis costs in cases where the

loops can be analyzed statically. Thus, Regent has a much more forgiving fallback for

when static analysis is insufficient than language implementations that rely solely on

static analysis.

5.4 Futures

In Legion, tasks can return futures, which can be passed to other tasks without

blocking, allowing applications to build chains of asynchronous operations ahead of

the actual computation. The Regent compiler can automatically lift variables and

simple operations to futures to take advantage of these benefits. This optimization

has three phases:

• The compiler first performs a flow-insensitive analysis to determine which vari-

ables are assigned to futures at any point within each task. Any such variables

are automatically promoted to hold futures.

• The compiler then issues calls to automatically wrap and unwrap futures when

storing a concrete value into a future-typed variable, or when reading a future-

typed value because a concrete value is required. Tasks do not require arguments

to be concrete, and can therefore be issued in advance of when the concrete

values of futures are ready.

• Finally, the compiler emits tasks to allow simple side-effect free operations (such

as arithmetic) to be performed directly on futures.

Note that the calling convention for Regent, discussed in Section 4.2.3 permits

future and immediate arguments to be used interchangeably, and in any number and

order. Thus this optimization can be applied aggressively without needing to be

concerned for the number of futures that might or might not be passed to tasks.
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5.5 Pointer Checks Elision

As noted in [68], static type checking of Legion programs allows certain classes of

pointer checks to be elided. Regent preserves all the properties of the type system

which make this possible. In particular, all pointer types in Regent explicitly contain

one or more regions that they point into. Regent checks these annotations to ensure

correctness at compile time, and elides the dynamic pointer checks, which are often

prohibitively expensive at runtime.

5.6 Dynamic Branch Elision

In addition, Regent is able to elide certain classes of dynamic branches when accessing

pointers in Legion. Pointers that can point into multiple different regions (e.g., private

or ghost points in PENNANT, as described in Section 7.2) carry some dynamic tag

bits encoding the region the pointer currently points to. In some cases, however, the

memory for the two regions is actually co-located at runtime (e.g. because of a decision

to map both regions to the same physical instance), allowing the dynamic branches

on the tag bits to be elided. The compiler emits code that automatically detects such

cases at runtime and selects the fast path when it is available.

5.7 Vectorization

Regent leaf tasks frequently feature loops over regions. In many cases, the Regent

compiler is able to vectorize these loops automatically, often exceeding performance

provided by traditional autovectorizers.

Regent performs runtime code generation to LLVM [48] via Terra [33]. While

LLVM provides an autovectorizer, the low level of abstraction of the LLVM IR means

that the vectorizer frequently misses vectorization opportunities or chooses the wrong

optimization strategies for its vector code. Regent’s native understanding of regions

allows the vectorizer to make these decisions with improved precision. Regent uses

Terra’s built-in vector types to produce explicit vector instructions for LLVM, resulting
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in significant performance gains in many cases.

Regent derives this advantage in precision from two sources. First, Regent has

improved information about aliasing through type, field, and region-based analysis.

In particular:

• While accesses for composite types are ultimately expressed as array accesses

to fundamental types (integers, double-precision floating point, etc.), Regent is

able to compare the original types to determine if there is potential for aliasing.

• Furthermore, even for identical types, Regent knows which fields are accessed

and may be able to use this information to prove independence.

• Finally, when two accesses are to different regions, Regent may be able to use

its knowledge of region disjointness to prove that accesses are independent.

Beyond this, Regent has access to implicit information about the costs of potential

vectorization opportunities through regions. Regions are hierarchical and distributed

data structures intended to provide opportunities for parallelism. Therefore, when

Regent sees an outer loop over a region, and an inner loop (over something other

than a region), Regent can infer with high confidence that the outer loop is the better

opportunity for vectorization. In some cases, largely because it lacks comparable

information for its cost model, LLVM chooses to vectorize the inner rather than outer

loop, resulting in degraded performance.

5.8 OpenMP

In cases where Regent can generate vectorized code, the compiler can also automatically

generate code to target other programming models, such as OpenMP. The primary

benefit to using OpenMP in Regent is to reduce runtime overhead by reducing the

number of tasks (e.g. producing one task per node instead of one task per core). Note

that Regent is not a source-to-source compiler and does not make use of the C++

compiler in any way to generate OpenMP code. Instead, Regent directly targets

the OpenMP ABI. This means that Regent can automatically generate OpenMP
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tasks without using any user-level pragmas, and that Regent’s OpenMP support,

unlike OpenMP implementations in C++ and Fortran, is sound and cannot result in

erroneous parallel execution of code for which such execution is not safe.

In practice, the underlying OpenMP implementation used in Regent is provided

by Realm, the portability layer that Legion targets. Thus, Regent OpenMP code

is not even linked against a conventional OpenMP runtime. This implementation

strategy means that OpenMP tasks execute as tasks in the normal way, preserving

task parallelism in the application. In addition, Realm’s support for OpenMP permits

multiple instances of OpenMP tasks to be executing simultaneously on different sets

of processors, for example to take advantage of NUMA properties of the machine.
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Implementation

We have implemented an optimizing Regent compiler using Terra [33], a low-level

programming language with semantics comparable to C, but with extensive and

sophisticated support for metaprogramming via multi-stage programming [67]. Terra

is embedded inside Lua [42], a high-level scripting language with first-class functions.

Lua plays the same role for Terra that C++ templates play for C++, and provides

many of the same benefits. However, Lua/Terra provides superior ease of use, because

the metaprogramming language is a full programming language rather than C++’s

restricted template language.

Terra uses LLVM [48] to provide efficient JIT compilation of Terra functions to fast

machine code. As noted in Section 5.7, Terra makes it possible to perform vectorization

and specialization with full awareness of the vector instruction set supported by the

machine. The use of LLVM as the JIT compiler also allows both Terra and Regent

functions to call and link easily against native C libraries.

Regent is implemented as a co-embedded language within Terra. The Terra API

provides support for extending the parser with additional keywords, which when seen

in the source program text cause Terra to invoke the embedded language compiler.

Regent overloads a number of keywords—most notably, the task keyword—allowing

the Regent language to interoperate seamlessly with both Lua and Terra. Regent

tasks may call Terra functions and have access to all data types supported by Terra,

including structs, arrays, and explicit vector types. The Regent compiler uses this
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information to provide automatic structure slicing [14] for struct types stored inside

logical regions. Regent tasks may also be dynamically specialized, using Lua, to

provide multiple implementations, which are JIT compiled prior to starting the Legion

runtime.

6.1 Runtime Support

In non-control replicated Regent programs, Legion discovers parallelism between tasks

by computing a dynamic dependence graph over the tasks in an executing program.

Control replication removes the need to analyze inter-shard parallelism, but Legion is

still responsible for parallelism within a shard as well as any parallelism in the code

outside of the scope of control replication.

A notable feature of Legion is its deferred execution model. All operations (tasks,

copies, and even synchronization) execute asynchronously in the Legion runtime. This

is an important requirement for supporting task parallelism, as it guarantees that the

main thread of execution does not block and is subsequently able to expose as much

parallelism as possible to the runtime system.

Legion targets Realm, a low-level runtime that supports execution on a wide variety

of machines [69]. Realm uses GASNet [73] for active messages and data transfer.

6.2 Mapping

All tasks in Regent, including the shard tasks produced by control replication, are

processed through the Legion mapping interface [13]. This interface allows the user

to define a mapper that controls the assignment of tasks to physical processors,

assignment of regions to physical instances in specific memories, and the layouts of

instances. At the user’s discretion, these decisions may be delegated to a library

implementation. Legion provides a default mapper which provides sensible defaults

for many applications.

When using control replication, a typical strategy is to assign one shard to each

node, and then to distribute the tasks assigned to that shard among the processors
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of the node. However, substantially more sophisticated mapper implementations are

also possible; in general mappers are permitted to be stateful and/or dynamic in their

decision making.

Regent and control replication are mostly agnostic to the mapping used. The

exception is that Regent task variants place some constraints on the layouts of instances

used, as described in Section 4.2.2. However, these constraints are provided by Regent

to the runtime and thus any valid mapper decision is guaranteed to produce an

acceptable layout for use in Regent.

6.3 Foreign Function Interface

In any practical system it is necessary to be able to interoperate with components

written in other languages. Regent provides a foreign function interface (FFI) for

this purpose. The Regent FFI supports two main use cases: calling C functions from

Regent tasks, and calling Legion APIs.

6.3.1 Calling C Functions

Fortunately, Terra provides much of the support required for calling C functions. Terra

can parse C header files via the includec built-in function, and can link dynamic

shared objects with linklibrary. This is sufficient for calling functions of simple

values such as sin and printf. Note that this also enables calling languages such as

Fortran which can support a C calling convention.

However, it is also important to support calling C functions that operate on the

contents of regions. For example, rather than implement matrix multiply in Regent,

it would be more productive (and likely more efficient) to call an optimized version of

the dgemm function. Regent provides a number of mechanisms to support this.

Typically, C functions that manipulate memory expect to receive pointers, possibly

with strides or other layout information. Regent provides two functions to assist in

this. The physical(R) function returns an array of physical instances for the region

R, one per field for which the current task has privileges. The fields(R) function
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returns an array of Legion field IDs for R. Regent does not provide a direct way to

obtain a pointer to a field of R as there are potentially many ways to do so, and the

choice will generally be application specific. However, with the physical instances and

field IDs, applications can use the Legion APIs as described below to obtain accessors

and/or raw pointers to memory.

6.3.2 Calling Legion APIs

Legion is written in C++, but also provides C functions that wrap the important

entry points for the API. These are exposed in Regent via regentlib.c, and can be

directly called inside Regent tasks.

Many Legion API calls require either a reference to the Legion runtime object

or to the context handle of the current task. These can be accessed in Regent via

the functions runtime and context. In addition Regent provides the function

raw(R) which returns the C API handle for many types of objects R such as regions,

index spaces, partitions, etc.

With these functions, it is possible to write code in Regent which uses the Legion

API directly. This enables Regent tasks to call Legion tasks written in C++ or

other languages, and (along with the functions for obtaining instances above) to call

non-Legion functions which support a C API.

6.3.3 Calling Regent Tasks from C++

No special support is required to call Regent tasks from Legion C++ code. The calling

convention for Regent tasks is documented in Section 4.2.3 and can be followed in

a straightforward way to generate calls to Regent tasks. The arguments to Regent

tasks are packed, along with the bitmask to signal the use of futures, in a struct and

follow the normal C++ rules for alignment of fields. In all other respects Regent

tasks operate as normal Legion tasks: regions, futures, phase barriers, and dynamic

collectives are all passed in the normal Legion manner.
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6.3.4 Interactions with Optimizations

A number of FFI features interact with Regent’s optimizations. For example, using

the physical function provides access to physical regions which Regent is not able

to track, and thus using the physical function inhibits the use of Regent’s inner

task optimization. Similarly, the use of context inhibits Regent’s leaf optimization

as the context object enables the use of a large number of Legion API calls which

might be invalid inside a leaf task. Notably, this restriction does not apply to the

runtime call as the runtime object alone is not sufficient to execute such API calls;

this permits leaf tasks to use Legion API calls which query the region tree, but not

modify it.

6.3.5 Generating Object Files

When integrating Regent with external applications, two approaches can be taken:

either the Regent tasks can be compiled separately and linked into the external

application, or the external application code can be compiled first and linked into

Regent. Regent supports both approaches.

Regent provides a regentlib.saveobj function that compiles Regent tasks and

produces either an executable binary (which can be useful for running Regent applica-

tions on machines where a dependence on LLVM would be problematic), or an object

file. An object file can be linked in to an existing application as desired.

If external C or C++ code is to be used in Regent, this code must be wrapped

in a pure C API and compiled as a shared library. Regent can then use the code by

loading the appropriate header file with includec and then linking a shared library

with linklibrary.

6.4 Metaprogramming

Metaprogramming is a technique for performing programmatic code generation. Terra

supports metaprogramming via the Lua scripting language, in which it is embedded.

Thus it is natural to extend Regent to support metaprogramming as well.
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While not strictly a required feature, the advantage of metaprogramming in Regent

is that it provides a natural way to support code generation for parallel programs

and languages. For example, a compiler for a domain specific language could use

Regent to automatically generate efficient and scalable parallel code. In contrast,

a more traditional approach would be to generate code to a lower-level, explicitly

parallel programming API such as pthreads or MPI. However, such an approach can be

time consuming, as the semantic gap between the domain-specific language and these

low-level parallel APIs can be quite large, and error-prone, as the compiler author

is exposed to the same potential pitfalls as users of explicit parallelism are generally

exposed. Worse, explicitly parallel APIs are typically not composable, making it

difficult to construct systems out of multiple domain-specific languages. Even when

targeting a dynamic, implicitly parallel runtime system such as Legion, there are a

number of ways in which naive code generation can lead to poor performance. Regent

provides easy-to-use sequential semantics and takes on responsibility for discovering

parallelism in the program, and for any optimizations required to achieve performance.

Regent also enables composability: calls to tasks from a domain-specific language

can be inserted into arbitrary Regent code while preserving the intended semantics,

enabling parallelism within and between domain-specific languages and other Regent

libraries or user code.

In the remainder of this section we describe features available in Regent that enable

metaprogramming.

6.4.1 Symbols, Quote and Escape

Regent provides three key operators for generating code and composing programs to

produce larger programs.

Symbols name Regent variables, and can be generated with regentlib.newsymbol(

type, name). Both arguments are optional. If a type is not supplied, it will be inferred

from the type of the variable initializer used in the variable declaration. A type is

always required if the symbol is to be used as a parameter to a task.

Quotes represent ASTs for Regent expressions or statements. Regent provides
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two quote operators: rexpr ... end and rquote ... end for expressions and

statements, respectively. For example, the expression rquote x += 1 end describes

a Regent statement that increments the variable x. As in Terra, rexpr and rquote

are Lua expressions, and are intended to be used inside a Lua script to build up ASTs

for the bodies of tasks.

Quotes can be composed using the escape operator [...]. The expression ...

inside the brackets is a Lua expression which is evaluated at the time that the quote

itself is evaluated in Lua. The rules for lexical scoping of Regent quotes and escapes

are identical to those used in Terra [33]. In the following code, the reference to x

inside the escape is well-defined and refers to a Regent symbol: quote var x = 0;

[do something(x)] end. Quotes can composed to produce larger sets of expressions

and statements, allowing entire tasks to be constructed programmatically.

6.4.2 Task Generation

Regent tasks need not be defined at the top level of the program, and can be created

within arbitrary Lua code. This means that Regent tasks may be dynamically generated

based on the inputs to the program. Note however that the regentlib.start call

which begins execution of the Regent program does not return, and thus dynamic task

generation is currently limited to the initial phase of the program execution, before

any tasks have begun to execute.

Task bodies, parameter lists, and privileges can be generated dynamically with

quotes. A task body must be a Regent expression or statement. Task parame-

ters must be Regent symbols, or lists of symbols. Privileges are constructed via

the function regentlib.privilege(mode, region, field) where mode is one of

regentlib.reads, regentlib.writes, or regentlib.reduces(op), region is a Re-

gent symbol naming a region parameter, and field (optional) is a string naming a field

within the region.

To assist in debugging, the Regent compiler provides a mode in which all tasks

are automatically pretty-printed to the console. This can be used to inspect the

generated code to ensure that the code being produced has the desired effect. This
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mode can also be used to inspect the result of any optimizations performed by the

Regent compiler—to ensure that all desired optimizations are being applied, and if

necessary to debug issues in the Regent optimizations themselves.

6.4.3 Type, Dimension, and Field Polymorphism

Metaprogramming can also be used to achieve a variety of kinds of polymorphism

which are otherwise not possible in non-metaprogrammed Regent. In particular, the

types of parameters, types and dimensionality of regions, and privileges and sets of

fields used in tasks, may all be customized via metaprogramming.

In Regent, all references to types (e.g. the T in var x : T) are Lua expressions.

This is also true of types that appear in the declarations of task parameters, and of

course in the type arguments to Regent symbols. This enables type polymorphism in

the language, as any type expression can be replaced by a Lua variable or expression

as needed. Lua functions can also be used to generate multiple copies of a task for

different types, and Lua code can be used to generate the appropriate call sites for

such tasks.

While the size and extent of regions in Regent is dynamic, the number of dimensions

is a static property of the region’s type in order to ensure that Regent can generate

high-performance code. As a result, codes that aim to be polymorphic over dimensions

should use metaprogramming as above to customize the types of regions to account

for startup-time dynamic numbers of dimensions in regions.

The sets of fields in field spaces, and fields accessed in tasks, can also be customized

via metaprogramming. This can be useful, for example, when a common task or piece

of code is used repeatedly with different fields. The names of fields in Regent are

represented as strings. Most places which accept a single field can also be used in

metaprogramming with a list of fields.



Chapter 7

Case Study

In this chapter we consider the design and implementation of a non-trivial proxy

application, PENNANT, in Regent. As a proxy application, PENNANT is designed to

reflect the patterns of computation and memory accesses typical of a broader class of

applications (in this case, unstructured mesh codes), while being small enough to allow

the code to be ported easily to a variety of architectures and programming models.

The reference PENNANT implementation, provided by Los Alamos National Lab, is

written in C++ and can be configured to use MPI, OpenMP, MPI+OpenMP, or none

of the above (for sequential execution), and has been heavily tuned for performance.

The code is approximately 2500 lines (ignoring blank lines and comments). The initial

Regent implementation of PENNANT was completed in under two weeks, including

time to learn and understand the structure of the reference code. As PENNANT

was also the first non-trivial code to be written in Regent, this also included time to

make a number of minor adjustments to the Regent language. The implementation of

PENNANT in Regent drove a number of design and implementation decisions in the

compiler and motivated a number of optimizations that Regent provides.

7.1 PENNANT Overview

PENNANT is a Lagrangian hydrodynamics proxy application for unstructured meshes

from Los Alamos National Laboratory [36]. PENNANT implements a subset of the
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functionality in FLAG [25], a shock-hydro code used in production at Los Alamos.

Compared to FLAG, PENNANT is restricted to 2D unstructured meshes (rather than

2D or 3D), and simulates only a subset of the physics in FLAG, explicitly excluding

the shock portion of the code.

PENNANT simulates hydrodynamics using a 2D unstructured mesh. The fun-

damental constituents of the mesh in 0, 1, and 2 dimensions are called points, edges

and zones. Because the mesh is unstructured, zones are polygons with an arbitrary

number of edges. Rather than manage dynamically-sized lists of edges for each zone,

PENNANT performs most operations on intermediary data structures called sides

which represent the triangular area between an edge and the center of a zone. Sides

contain pointers to zones and points, but not vice versa. Because PENNANT is

a Lagrangian code, the points in the mesh move in the simulation space over the

duration of the simulation, causing the mesh to deform. However, the logical structure

of the mesh (i.e. the pointers between the mesh elements) does not change over time.

PENNANT includes several types of physics, which are computed in phases within

each time step in the simulation:

1. First, the dt for the time step is determined, and the positions of points in the

mesh are advanced halfway (i.e. by 1
2
dt in time).

2. Second, various properties of sides and zones are computed, culminating in an

accumulation of forces from sides into points.

3. Third, this force is used to accelerate points and compute the fully advanced

positions of points (by the remaining 1
2
dt in time).

4. Finally, zones are again updated, and the dt for the next time step is computed.

In simulations such as PENNANT, the size of a time step depends on the

physical properties of the mesh, and as the mesh can deform, these must be

recomputed on each time step. This requires the use of a scalar reduction to

compute dt, which has the potential to be a bottleneck at large node counts.

In a parallel and distributed implementation of PENNANT, the mesh must be
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Figure 7.1: Naive PENNANT data partitioning: zones (left), sides (middle), and
points: write sets of phases 1, 3 (bottom left) and read/reduce sets of phases 2, 4
(bottom right).

partitioned into submeshes in order to distribute work between the various proces-

sors of the machine. Figure 7.1 shows an example of a mesh that could be used

with PENNANT; in this case the mesh has been divided into three submeshes. In

both reference and Regent implementations, the primary partitioning of the mesh

is over zones. Every zone belongs to exactly one submesh, as the access patterns

in PENNANT do not require the values of zones to be communicated. This also

leads to a straightforward partitioning of sides, as each side belongs exclusively to a

zone, and again need not be communicated. However, the points of the mesh require

communication as different phases of the application require different sets of points as

shown on the bottom of Figure 7.1. Phases 1 and 3 of the simulation perform writes

to the sets of points shown on the bottom left. Phases 2 and 4 perform either reads

or reductions to sets of points on the bottom right; note that points at the boundaries

between submeshes exist in the read/reduce sets of multiple tasks. Because of these

overlapping access patterns, multiple processors may race to update the forces on these

aliased points. In a shared-memory machine, these accesses may be mediated through

atomic operations or other synchronization; no explicit communication is required. In

a distributed-memory environment, the partial sums of forces must be communicated

and synchronized. Both of these implementation details can be seen as a necessary
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outcome of the fundamentally overlapping access patterns in the application. Thus a

central concern in the design of an implementation of PENNANT is the management

of the communication implied by such aliased access patterns.

In the OpenMP implementation of PENNANT, the required synchronization is

handled by the implicit barrier at the end of each parallel loop; the accumulation

of forces into points is managed by computing partial sums over sides and using a

separate parallel loop to read these partial sums and compute the final forces on

points. (An implementation using atomic operations would also be possible, but this

approach is not taken in the OpenMP reference, in part for better consistency with

the MPI implementation.) OpenMP relies on shared-memory semantics to avoid any

need for explicit partitioning or data movement.

The MPI implementation requires additional work as the mesh must be explicitly

distributed throughout the machine. Again, the partitioning of zones and sides is

straightforward as these access patterns do not overlap and there is no need for

communication. Points, however, require communication. Points at the boundaries

between submeshes are duplicated, and one of the duplicates of each point is named

the master. Other copies are named slaves. All computations on points are performed

on the master copy and results communicated to the slaves. In the phase where forces

are accumulated onto points, partial sums are computed on sides, these partial sums

are communicated to the master, and the final sum computed for each point and then

broadcast back out to slaves.

7.2 Regent Implementation

The primary concerns in the design of a Regent implementation are the decomposition

of the program control into tasks, and the partitioning of regions into subregions that

accurately name the elements to be used by the various tasks. A straightforward

implementation would exploit Regent’s sequential semantics to maintain the consis-

tency of a single (conceptually shared) copy of the mesh. In this sense, the Regent

implementation—despite the use of explicit partitioning—resembles a shared-memory

implementation more than it does an explicitly distributed implementation such as in
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MPI. In Regent, points that exist at boundaries between submeshes may be included

in multiple aliased subregions, but are not duplicated and explicitly communicated as

in MPI.

A Regent program achieves parallelism by dividing the computation into tasks. In

this case, the program might consist of a task per phase of the simulation per chunk

of the mesh. More fine-grained tasks are also possible, and would expose additional

task parallelism in the application, but as described in Section 7.4, various factors

push us towards an implementation where tasks are fused to the maximum extent

possible, resulting in exactly one task per phase.

In Regent, data structures are stored in regions. For PENNANT, each kind of

mesh element (zone, side, or point) is stored in a separate region, and elements of sides

contain pointers to elements of the other two regions. For parallel and distributed

execution, these top-level regions must be partitioned into subregions naming the sets

of elements needed by the various tasks in the application. For zones and sides, these

subregions correspond to the colored submeshes shown in Figure 7.1. For points, a

simple partitioning scheme could simply use two partitions of the points, naming the

write and read/reduce sets shown on the bottom left and bottom right of the figure,

respectively.

While the naive partitioning in Figure 7.1 is appealing in its simplicity, in practice

this partitioning scheme leads to unnecessary data movement and analysis cost at

runtime. The root of the problem is that the naive scheme does not take care to

separate elements that will be communicated from those not involved in communication.

Because this information is not provided by the user, a Regent implementation is

forced to choose between two undesirable options: either it can perform potentially

unnecessary data movement (i.e. copying all the shaded points of a given color, rather

than just those with multiple colors), or it can perform a dynamic analysis to determine

which elements are involved in communication (i.e. requiring an all-pairs comparison

of the sets of elements in subregions). Fortunately, Regent’s support for hierarchical

partitions allow the user to express this information directly, avoiding the need for

the compiler and runtime to second-guess the user’s decisions.

Figure 7.2 shows the result of this hierarchical partitioning applied to the original
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Figure 7.2: Hierarchical PENNANT data partitioning: zones (top left), sides (top
middle), and points: all private vs. all ghost (top right), private (bottom left), master
(bottom middle) and ghost (bottom right).

example mesh. Instead of using two partitions of points, the new scheme uses four

partitions. The initial partition, which is shown in the upper right of Figure 7.2,

divides points into two sets: all private (the solid-shaded points, which are not in-

volved in communication) and all ghost (the hatched points, which may be involved

in communication at some point in the application execution). This stage is critical

because it identifies to the Regent compiler which points are or are not involved in com-

munication. Note the two subregions (all private and all ghost) are disjoint. Because

the partition is disjoint, there will be no subsequent need to consider any interactions

between private and ghost points; private points will never be communicated, and

in control replication no intersections between private and ghost subregions need be

considered.

The subregions of this top-level partition are then further partitioned an additional

three times. On the bottom right of Figure 7.2, the private points are partitioned to

identify the subsets that belong to each of the three submeshes. This partition is again

disjoint, which guarantees that the Regent compiler need not consider interactions

between the private points belonging to each of the submeshes. In the bottom middle,

the master partitions plays a role similar to the master points created in MPI. During
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certain phases of the application, various computations will be performed on the

master partition, and this partition must be disjoint to permit these computations to

proceed in parallel. On the bottom right, the ghost partition identifies the points that

need to be read from each submesh, and as a given point may need to be read from

multiple submeshes, this partition is aliased.

Thanks to Regent’s sequential semantics, this partitioning is relatively transparent

to the application. Although the sets of elements in each subregion must be explicitly

identified, the consistency of subregions is managed by the Regent compiler and

runtime. Subregions behave as views or aliases of the parent region. If an object is

contained in multiple overlapping subregions, any update to that object is visible to

any task that follows in program order and that references the object through any

other aliased subregion. This means that references through pointers between objects

(e.g. from sides to points) are automatically valid as long as the task in question has

requested privileges on the appropriate regions. This is in contrast to MPI, where

overlapping access patterns such as the one in PENNANT require the application to

explicitly create duplicate sets of master and slave points and manage the consistency

of those duplicates.

Figure 7.3 shows an excerpt from an implementation of PENNANT that follows

this strategy. The code shows phases 2 and 3 of the application, where forces are

accumulated onto points and then forces used to update the velocity and position

of the points themselves. For simplicity, and because only points are involved in

communication, the code only shows data usage for points, and only for a single field

f of the point objects representing the force exerted on each point.

In Regent, the effects of a task are completely described by the arguments and

privileges in the task’s declaration. Thus, for the purposes of the top-level design of

an application, it is sufficient to declare the tasks as in lines 1-4 of Figure 7.3, and

leave the bodies of the tasks to be implemented later. The task calc forces on lines

1-2 reads and writes the f field of the private subregion belonging to each submesh,

and applies reductions over + to the ghost subregion. (For regions of user-defined

data types, a privilege may optionally name a specific field within the elements of

the region.) The task adv pos full on lines 3-4 reads the accumulated forces from
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1 task calc forces(private : region(point), ghost : region(point))
2 where reads writes(private.f), reduces +(ghost.f) do . . . end
3 task adv pos full(private : region(point), master : region(point))
4 where reads(private.f, master.f) do . . . end
5

6−− inside the main simulation task:
7 var points = region(. . . , point)
8 var private vs ghost = partition(disjoint, points, . . . )
9 var private = partition(disjoint, private vs ghost[0], . . . )

10 var master = partition(disjoint, private vs ghost[1], . . . )
11 var ghost = partition(aliased, private vs ghost[1], . . . )
12 while t < T do
13 dt = dtnext
14 for i = 0, N do
15 calc forces(private[i], ghost[i])
16 end
17 −− implied communication from ghost to master
18 for i = 0, N do
19 adv pos full(private[i], master[i])
20 end
21 dtnext = ... −− computed via scalar reduction
22 t += dt
23 end

Figure 7.3: Excerpt from PENNANT Regent implementation control flow.

private and master subregions and (not shown) writes the velocity and position fields

of both regions.

Lines 8-11 of Figure 7.3 show the partitioning calls used to create the hierarchical

partitions shown in Figure 7.2. Line 8 creates the initial top-level partition between

all private and all ghost points in the mesh. Lines 9 and 10-11 then create nested

partitions of the respective subregions: a disjoint partition of the private points, and

disjoint and aliased partitions of the ghost points. These calls show the use of the

original style Regent partitioning calls using arbitrary coloring objects that map colors

(small integers) to sets of points. (The colorings themselves are not shown.) It is also

possible to compute the same partitions via the sublanguage of dependent partitioning

operators described in Section 2.3.2. However, PENNANT was originally written at a

time when these operators were not available in Regent.
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7.3 Leaf Tasks

After the top-level control flow and partitioning scheme is decided, the remaining

work in a Regent implementation consists of defining leaf tasks which perform the

actual work in the application. Fortunately, leaf tasks are usually straightforward to

implement. Figure 7.4a shows the implementation of the adv pos full task declared

above. The task loops over points, reading the forces (f) computed from the previous

step and finally updating velocity (u) and position (x).

For comparison, an equivalent C++ implementation that uses the Legion runtime

API is shown in Figure 7.4b. The primary differences include:

1. Physical instances are explicitly unpacked from the task’s arguments (lines 5

and 13).

2. Accessors for each field are constructed (lines 6-12 and 14-17).

3. Arguments passed as futures are explicitly unpacked (lines 18-19).

4. The C++ code explicitly iterates over spans of contiguous elements so that the

inner loop can avoid a call into the iterator (lines 22-27).

5. Fields of complex types are explicitly expanded into multiple fields of basic types

(lines 29-30, 31-32, 33-34, and 35-38).

All of this complexity is hidden and managed automatically by the compiler in the

Regent implementation as described in Chapter 4.

7.4 Cache Blocking

The reference implementation of PENNANT employs a critical cache-blocking opti-

mization which prevents the application from becoming memory-bound and allows it

to scale with reasonable efficiency to the cores within a node. In the reference code,

the inner loops have been strip-mined to form double-nested loops where the outer

loops iterate over chunks of elements that are small enough to fit in the L2 cache of a
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1 task adv pos full(points : region(point), dt : double) where
2 reads(points.{x0, u0, f, maswt}), writes(points.{x, u})
3 do
4 var fuzz = 1e−99
5 var dth = 0.5 ∗ dt
6 for p in points do
7 var pap = (1.0 / max(p.maswt, fuzz))∗p.f
8 var pu = p.u0 + dt∗pap
9 p.u = pu

10 p.x = p.x0 + dth∗(pu + p.u0)
11 end
12 end

(a) PENNANT leaf task implementation in Regent.

1 void adv pos full(const Task ∗task,
2 const std::vector<PhysicalRegion> &regions,
3 Context ctx, HighLevelRuntime ∗runtime)
4 {
5 PhysicalRegion points0 = regions[0];
6 Accessor<double, SOA> points x0 x(points0, PX0 X);
7 Accessor<double, SOA> points x0 y(points0, PX0 Y);
8 Accessor<double, SOA> points u0 x(points0, PU0 X);
9 Accessor<double, SOA> points u0 y(points0, PU0 Y);

10 Accessor<double, SOA> points f x(points0, PF X);
11 Accessor<double, SOA> points f y(points0, PF Y);
12 Accessor<double, SOA> points maswt(points0, PMASWT);
13 PhysicalRegion points1 = regions[1];
14 Accessor<double, SOA> points x x(points1, PX X);
15 Accessor<double, SOA> points x y(points1, PX Y);
16 Accessor<double, SOA> points u x(points1, PU X);
17 Accessor<double, SOA> points u y(points1, PU Y);
18 Future f0 = task−>futures[0];
19 double dt = f0.get result<double>();
20 double fuzz = 1e−99;
21 double dth = 0.5 ∗ dt;
22 IndexIterator it(points0.get logical region().get index space());
23 while (it.has next()) {
24 size t count;
25 ptr t start = it.next span(count);
26 ptr t end(start.value + count);
27 for (ptr t p = start; p < end; p++) {
28 double frac = (1.0 / max(points maswt.read(p), fuzz));
29 double pap x = frac ∗ points f x.read(p);
30 double pap y = frac ∗ points f y.read(p);
31 double pu x = points u0 x.read(p) + dt ∗ pap x;
32 double pu y = points u0 y.read(p) + dt ∗ pap y;
33 points u x.write(p, pu x);
34 points u y.write(p, pu y);
35 points x x.write(p, points x0 x.read(p) +
36 dth∗(pu x + points u0 x.read(p)));
37 points x y.write(p, points x0 y.read(p) +
38 dth∗(pu y + points u0 y.read(p)));
39 }
40 }
41 }

(b) PENNANT leaf task implementation in Legion C++ API.

Figure 7.4: PENNANT leaf tasks in Regent and C++.
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CPU core. Because the mesh is unstructured and contains pointer data structures

with internal consistency properties that must be maintained, the optimization is

challenging to implement in a general-purpose compiler and thus must be implemented

manually. The Regent implementation follows the same pattern as the reference code,

although the definition of a chunk has been tweaked slightly to keep more elements in

cache when switching from looping over different kinds of data structures (from zones

to sides or vice versa). Fortunately, this optimization has a minimal impact on the

signature of a task, and thus all of Regent’s higher-level optimizations (most notably

control replication) are not impacted by the manual application of this optimization

in the code.

In the Regent implementation, the chunks used for cache blocking are represented

as an addition level of partitioning in the region tree (a second level for zones and

sides, and a third level for points). No tasks are ever launched on the individual

chunks; instead entire partitions of chunks are passed to the leaf tasks, and those

tasks contain double-nested loops first over chunks and then over elements of chunks.

The partitions themselves are subsumed by the existing region arguments to tasks

and thus do not impact privileges the tasks require.

Due to the multiple types of physics it uses, PENNANT does have some task

parallelism available, which could potentially enable flexibility in the scheduling of

tasks. However, exploiting this task parallelism interferes with the cache blocking

optimization described above. Because the cache blocking optimization prevents

PENNANT from being memory-bound, it is much more important to preserve that

optimization than to expose task parallelism in the application. In the Regent

implementation of PENNANT, we manually fused the tasks in order to preserve the

contents of the cache. The result of this fusion is that the Regent implementation of

PENNANT uses one task per phase of the computation as described above.



Chapter 8

Evaluation

In this chapter we follow up on the qualitative evaluation of Regent in Chapter 7

and attempt to quantify the impact of Regent on programmer productivity and

performance. To conduct these experiments, we ported five small applications into

Regent: three unstructured and two structured codes. These applications, ranging

from approximately 1000 to 4000 lines of code, are intended to represent meaningful

subsets of larger applications or classes of applications. Three of the five applications

have hand-written and manually tuned C or C++ implementations that employ either

MPI or some variety of MPI+X for parallelism. For one version of one of the four

applications we considered a C++ Legion reference implementation of the same code.

To quantitatively evaluate Regent’s productivity, we compare the number of lines

of code in the Regent and reference implementations. While lines of code comparisons

have some limitations, this provides some empirical evidence that Regent provides

meaningful productivity benefits for programmers.

The performance benchmarks evaluate Regent’s progress towards two distinct goals.

First, is Regent capable of generating kernels with performance competitive with

hand-tuned C and C++ code? Note that this is not strictly necessary, because Regent

tasks can always call C or C++ functions directly. However, Regent’s productivity

benefits are much more significant when entire codes can be entirely written in Regent.

Second, is Regent capable of matching the single- and multi-node scalability of

reference implementations written in well-known parallel programming models? In

84
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all cases, we report absolute performance, as this is the measure that is ultimately

relevant to end users, though parallel efficiency is also of interest, particularly with

control replication.

The experiments in this chapter were originally conducted in two parts, and thus

are described separately. There are some differences between the experiments. Most

notably, the initial experiments were conducted without control replication, and thus

evaluate performance only on single or small numbers of nodes. The second set of

experiments evaluate the effectiveness of control replication specifically and focus

primarily on scaling to large numbers of nodes.

In the following section, we describe the benchmarks used in the experiments.

Then we consider each of the sets of experiments.

8.1 Benchmarks

We evaluate Regent versions of five applications: a circuit simulation on a sparse

unstructured graph; MiniAero, an explicit solver of the compressible Navier-Stokes

equations on a 3D unstructured mesh; PENNANT, a Lagrangian hydrodynamics

simulation on a 2D unstructured mesh; a stencil benchmark on a regular grid; and

Soleil-X, a turbulence and particle solver on a 3D structured grid. Each application is

described below.

8.1.1 Circuit

Circuit, introduced in [13], is a distributed simulation of an electrical circuit, operating

over an arbitrary, unstructured graph of nodes and wires. The simulation consists of

three phases. The first phase reads the voltages of nodes from the previous phase

and determines the current moving along each wire using an iterative solution to the

differential equations of the RLC model of the circuit. The second phase reads the

current on each wire and computes the resulting charge that accumulates on each

node in the circuit. The third phase computes updated voltages based on the charge

at each node. Of these, the first stage dominates overall execution time, and because
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the iterative method is compute-limited, the application has high compute intensity.

We consider two variations on the circuit simulation design. The original C++

Legion implementation from [13] is used in the initial experiments, to enable a direct

apples-to-apples comparison with Regent. The C++ implementation uses hand-

written SSE vector intrinsics in the compute-limited portions of the code, and is highly

optimized. The Regent version relies entirely on Regent’s auto-vectorizer to achieve

the same performance. The input problem tested was a randomly generated circuit

with some internal structure. Specifically, the nodes in the input graph are divided

into subgraphs which are densely connected, with fewer wires (5%) crossing between

subgraphs. However, while a smaller number wires cross between subgraphs, the

choice of which subgraph to connect to is still random, and thus the overall structure

of the communication of the application is still dense: almost every compute node in

the machine can be expected to communicate with every other node. As a result, this

version of the application is inherently communication-bound at higher node counts

and thus not appropriate for scaling studies at very large numbers of nodes.

In the second set of experiments, the structure of the graph was modified to permit

scaling the simulation to large numbers of nodes. Specifically, the new simulation

modifies the random function used in selecting which subgraph an external wire

should connect to. Instead of using an unconstrained random function, the function

is constrained so that each subgraph touches at most six other subgraphs, and

external wires are randomly assigned from among these. This results in an overall

communication graph that is sparse. In addition, the percentage of external wires was

increased to 20% from 5%, which increases the volume of communication to offset the

decrease in the amount of connectivity between subgraphs.

Both Legion and Regent implementations of Circuit take advantage of the hier-

archical partitioning structure described in Section 3.4.3. In Circuit, because only a

fraction of the wires are involved in communication, the set of nodes connected to

those wires is bounded and can be determined at initialization time. Circuit uses a

top-level partition to separate all private nodes, which are internal to a subgraph, from

shared nodes, which exist at the boundaries between subgraphs. Following this the two

regions of private and shared nodes are further subdivided by subgraph to identify the
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halos and sets of internal nodes in each subgraph. This structure identifies explicitly

the elements that are involved in communication, enabling further optimizations in

Legion and Regent.

8.1.2 PENNANT

PENNANT is a Lagrangian hydrodynamics proxy application for unstructured meshes

from Los Alamos National Laboratory [36]. The reference implementation of PEN-

NANT is written in C++ and supports configurations that use OpenMP, MPI, and

MPI+OpenMP. The Regent implementation of PENNANT is discussed in detail in

Chapter 7.

PENNANT includes a dynamic computation of the dt which is used to increment

the simulation time on every time step. This requires the use of a scalar reduction,

which has the potential to be a bottleneck at large node counts. Unfortunately,

this scalar reduction is completely exposed as there is no additional task parallelism

available to hide the additional latency. Fortunately however, the stop condition at

the top of the main simulation loop depends only on the previous, rather than current,

dt, so this scalar reduction does not cause the control thread to block. In the Regent

implementation, tasks are issued one iteration ahead of execution, which is sufficient

to hide the latency of the dynamic runtime analysis.

PENNANT employs a cache-blocking optimization which prevents the application

from becoming memory-bound and enables reasonable scaling to the cores within a

node. This optimization does not impact the application of control replication because

the details of the cache blocking are subsumed by and hidden behind the signature of

a task.

However, a result of this cache-blocking optimization is that the tasks in the

application are fused to the maximum extent possible. Thus PENNANT exposes no

task parallelism at all to the Legion runtime, which causes PENNANT to be somewhat

more sensitive to runtime overhead than other applications.

As in Circuit, PENNANT also applies the hierarchical partitioning scheme from

Section 3.4.3. In the case of PENNANT, points are involved in communication, and
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thus the points are partitioned hierarchically. This partitioning is described in detail

in Section 7.2. Zones and sides need not be partitioned hierarchically as they are not

involved in communication; a single disjoint partition suffices for each.

8.1.3 MiniAero

MiniAero is a computational fluid dynamics mesh proxy application from the Mantevo

suite [38] developed at Sandia National Laboratories. MiniAero uses uses a Runge-

Kutta fourth-order time marching scheme to solve the compressible Navier-Stokes

equations on a 3D unstructured mesh. The reference version of the application

is written in a hybrid style, using MPI for inter-node communication and Trilinos

Kokkos [34] for intra-node parallelism. (Kokkos is a portability layer for C++ that

compiles down to pthreads (on CPUs), also developed at Sandia.)

The mesh elements in MiniAero are cells and faces. The mesh is divided into

submeshes via a simple disjoint partitioning of cells. Cells at the boundaries between

submeshes are members of the halos of other submeshes, and are thus involved

in communication. The Regent implementation of MiniAero uses a hierarchical

partitioning scheme to separate communicated and non-communicated elements. Faces

are duplicated at submesh boundaries, and thus are not involved in communication.

MiniAero is mostly memory-bound, and thus is sensitive to optimizations that

improve locality. When implementing MiniAero in Regent, we noticed that locality,

and thus performance, benefits substantially from using a hybrid data layout, where

some fields are stored in SOA layout and others are stored in AOS layout. The versions

of Legion used in the experiments did not support this kind of hybrid layout, and thus

the initial Regent implementation of MiniAero uses arrays to achieve the same effect.

However, this served as a proof of concept for the value of these hybrid layouts (with

different fields simultaneously in SOA or AOS layout), and support for these layouts

has since been added to Legion.
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8.1.4 Stencil

Stencil is a 2D structured benchmark from the Parallel Research Kernels (PRK) [71,72].

Note that, as support for structured regions was not available in Regent at the time

of the initial experiments, this benchmark is included only in the latter experiments

for control replication.

The code performs a stencil of configurable shape and radius over a regular grid.

Our experiments use the default configuration: a radius-2 star-shaped stencil on a grid

of double-precision floating point values. In our experiments we compare a Regent

implementation against the MPI and MPI+OpenMP reference codes provided by

PRK.

Because Stencil is a structured application, it is possible to identify the grid

elements involved in communication even more precisely than in the unstructured

applications above. At each step in the computation, halos of grid elements must be

communicated with the subgrids to the north, south, east and west. (In a star-shaped

stencil, no elements are communicated diagonally.) These communication patterns are

all independent, and thus a top level partition divides the regions five ways: one way

for elements not involved in communication at all, and four ways for communication

in each of the cardinal directions. Then, each of the four subregions involved in

communication is then partitioned two ways to identify producers and consumers

of values in each direction. This structure identifies to Regent and Legion precisely

which elements must be communicated. Note that, under control replication, only

four sets of intersections must be computed: one for each of the cardinal directions,

between the producer and consumer partitions of each of those directions. No other

intersections must be considered at all, because of the static disjointness information

that is inherent in this region tree structure.

For this application, we use the Regent foreign function interface to call into C

implementations of the kernels. These kernels are called from Regent tasks which

declare the appropriate privileges, thus optimizations such as control replication need

not reason about the effects of calls to C functions. We have also built a pure Regent

implementation which uses metaprogramming to construct optimized kernels for the
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stencil; however the Regent auto-vectorizer does not yet have full support for multi-

dimensional regions and thus for these experiments we only consider the version which

uses C kernels.

8.1.5 Soleil-X

Soleil-X is a turbulence solver that uses a 3D structured grid of cells with particles

that track the movement of the fluid in a bidirectionally-coupled simulation. Soleil-X

is therefore a hybrid structured/unstructured code: the fluid computation is entirely

structured, while the particles move freely and are represented with an unstructured

region.

Of all the applications in this evaluation, Soleil-X is the only application not

written directly in Regent. Instead, Soleil-X is written in a domain specific-language

Ebb [16] for physical simulations that targets Regent. Ebb supports forall-style parallel

loops with stencil-like access patterns. Ebb programs do not contain any explicit data

partitioning or tasks; these are generated automatically by the Ebb compiler. We

used an implementation of Ebb for Regent to evaluate the performance of Soleil-X

on distributed-memory machines. Regent was in this case an enabling technology,

allowing a efficient and scalable implementation of Ebb to be created quickly, without

needing to write a compiler to directly produce low-level distributed code. Ebb was

also able to take advantage of Regent’s support for generating high-performance

kernels.

Soleil-X also depends on Regent’s support for structured grids and thus is included

only in the second set of experiments.

8.2 Initial Experiments

In our initial experiments, we consider the productivity and performance of Regent

on three unstructured benchmark applications. First, to quantify productivity, we

compare the lines of code of each Regent implementation against a reference. Second,

we explore the impact of the optimizations described in Chapter 5. And third, we
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Regent
Application Reference Total Mapper Partitioning
Circuit 1701 969 144 159
PENNANT 2416 1789 244 163
MiniAero 3993 2836 193 51

Figure 8.1: Non-comment, non-blank lines of code for Regent and reference implemen-
tations.

consider the performance and scalability of each Regent application. Note that control

replication was not available at the time these experiments were performed, thus in

these experiments we consider performance only on a single node or small number of

nodes.

The experiments were done on the Certainty supercomputer [1]. Each node has

two sockets with an Intel Xeon X5650 per socket for a total of 12 physical cores per

node (24 threads with hyperthreading). Nodes are connected with Mellanox QDR

Infiniband. The Legion runtime and all three C++ reference codes have been compiled

with GCC 4.9.2. Regent uses LLVM 3.5 for code generation.

8.2.1 Lines of Code

We evaluate the productivity of Regent by comparing the number of lines of codes

in each Regent implementation against each reference. Figure 8.1 summarizes the

results.

It is worth acknowledging up front the limitations of such measurements. Not all

benefits can be accounted for by way of lines of code. Regent’s sequential semantics is

an example of a benefit with enormous impact which does not necessarily translate

to a direct reduction in lines of code. Beyond this, the benchmarks chosen do not

make substantial use of task parallelism. If additional task parallelism were added to

any of these benchmarks, the OpenMP and MPI versions would require substantial

rewriting to take advantage of it, while the Regent implementations would all exploit

this parallelism with no additional effort.

When comparing to OpenMP and MPI in particular, note that Regent (somewhat

counterintuitively) requires the user to be more explicit about organization and
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placement of data. Despite this, the Regent codes evaluated were all shorter than

their corresponding reference versions. In addition, two improvements to the Regent

language have been identified that have the potential to dramatically reduce the

lines of code associated with certain activities (specifically partitioning and mapping).

These improvements were not available at the time of the original experiments, but

have been called out separately in the results to indicate the potential upside. These

are also discussed in more detail below.

Of the three applications, Circuit is shows the largest difference: the Regent

implementation is 43% smaller than the Legion C++ implementation. This is mostly

due to the use of SSE vector intrinsics in the Circuit source code. In our experience,

C++ compilers are unable to generate code of the same quality automatically, while

Regent’s auto-vectorization achieves the performance of the hand-written vector code.

The Regent implementation did not use any explicit vectors or vector intrinsics.

PENNANT in Regent is approximately 25% shorter than the OpenMP reference

code (43% when excluding mapper and partitioning code). Note that the line counts

in Figure 8.1 exclude common code used in both applications—specifically, the mesh

initialization code, which the Regent implementation borrowed from the reference.

The Regent implementation of MiniAero is about 30% shorter than the MPI+Kokkos

reference code (35% when excluding mapper and partitioning code).

In all cases, the lines of code reported for Regent include a mapper written in C++

that targets the Legion mapper API. The mapper column under Regent in Figure 8.1

reports the lines of code contained in mapper implementations for each application.

In practice these mappers are quite simple and the C++ code to implement one is

needlessly verbose. In the future, we are interested in investigating the possibility

of a domain-specific language for mappers that could potentially replace the C++

implementations used in these experiments. We have an initial prototype of such a

language, and the preliminary results are encouraging, suggesting that the lines of

code associated with mapping can be significantly reduced.

Each of the Regent implementations also includes code to partition regions into

subregions. The number of lines of code associated with partitioning is reported in

the partitioning column under Regent in Figure 8.1. The numbers reported here use
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Key Optimization
map Mapping Elision
leaf Leaf Task Optimization
idx Index Launch Optimization
fut Future Optimization
dbr Dynamic Branch Elision
vec Vectorization
all All of the Optimizations Above

Figure 8.2: Legend key for knockout experiments.

the current Legion partitioning API, which is known to be verbose. As noted in [70], a

more expressive sublanguage for partitioning can dramatically reduce the size of this

code. In fact, for each of the applications above, less than 10 lines of code are required

with the partitioning sublanguage. Once this support is available in Legion, this more

expressive sublanguage for partitioning will also be made available in Regent.

8.2.2 Impact of Optimizations

Next, to demonstrate the impact of the compiler optimizations performed by Regent,

we perform knockout experiments for each application, disabling each optimization

presented in Chapter 5 in turn. In addition, we perform double knockout experiments,

measuring performance with all possible pairs of two optimizations disabled, and

call out a few interesting combinations. As several of the optimizations impact the

achieved parallelism, we evaluate each configuration in a parallel configuration and

compare against the best sequential performance achieved by Regent. The labels for

the various optimizations are described in Figure 8.2. Pointer check elision has been

previously demonstrated to have a significant impact on performance [68] and has

been left out of the knockout to reduce clutter.

Figure 8.3 summarizes the results. Two classes of effects are visible. Some

optimizations (or pairs of optimizations), when disabled, result in a loss of parallel

execution. The combination of index launch and mapping optimizations is an example

of such a pair. Fortunately, there are relatively few such combinations. Most other

optimizations have a smaller impact, about 10-15%. While these effects may seem

inconsequential compared to a loss of parallelism, they are still important to overall
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(b) MiniAero (8 CPUs).
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(c) PENNANT (10 CPUs).

Figure 8.3: Knockout experiments. The red line in each graph shows the best sequential
Regent performance.

application efficiency. An application without any of these optimizations would

lose a total of about 50%, an amount which is often considered unacceptable in

high-performance application development.

As mentioned above, certain optimizations impact the parallelism available in the



CHAPTER 8. EVALUATION 95

application; index launch optimization and mapping elision are two such optimizations.

When both are disabled simultaneously, the code runs sequentially. (The red line

on each graph indicates the best performance on a single-thread.) As described in

Section 5.1, the Legion runtime, in the absence of the map and unmap calls placed by

the compiler, must copy back the results of each task execution before returning control

to caller. This creates an effective barrier between consecutive tasks, but the effect

is not noticeable as long as index launch optimization is able to parallelize the task

launches. Disabling both optimizations serializes the code. But if either optimization

is disabled by itself, the application continues to run in parallel at somewhat reduced

throughput.

This redundancy allows Regent to be much more robust in the presence of dynamic

behavior. Traditional optimizations for parallelism can fail in situations where the

independence of tasks cannot be proven statically. In these situations, Regent is able

to fall back on the Legion runtime to discover parallelism dynamically. As a result,

most optimizations for parallelism, when disabled individually, have only a 10-15%

impact on overall performance. This impact is due to either unnecessary blocking,

stalls in the runtime analysis pipeline, or increased overhead, as noted in Section 4.1.4,

and thus is more noticeable in applications where the runtime overhead is already

more exposed. PENNANT is such an application, because the dynamic computation

of dt at the end of the time step loop prevents the runtime from running more than

one iteration ahead of the application. However, the result of a failed optimization in

traditional static compilers would be sequential execution, and in Regent this only

occurs when at least two optimizations fail.

Some more subtle effects are also visible in the knockout results. PENNANT’s

pattern of task launches is such that when leaf optimization alone is disabled, the

Legion runtime must stall for mapping to complete in order to ensure that all the

dependencies are correctly captured. Circuit and MiniAero are structured differently

from PENNANT and therefore are not impacted significantly by the absence of leaf

optimization (in combination with index launches or otherwise).

PENNANT also shows the most benefit from eliminating dynamic branches. In

contrast to Circuit and MiniAero which are generally compute or memory bound,
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certain performance critical kernels in PENNANT contain long chains of dependent

math instructions, which in turn depend on conditional memory accesses (when

dynamic branch elision is not enabled). At 10 cores, throughput improves by 15%

if dynamic branches can be eliminated. Dynamic branch elision does not have a

significant impact on the other applications and is hidden in those graphs to reduce

clutter.

8.2.3 Performance

We now consider the performance of Regent implementations of the three applications

against the various reference codes. Figure 8.4 shows the absolute performance of

each of the three applications while strong scaling.

Circuit

We compare the performance of Regent against a hand-tuned and manually vec-

torized CPU implementation written to the C++ Legion API. We evaluate both

implementations on a graph with 800K wires connecting 200K nodes. Figure 8.4a

shows the strong scaling performance of Regent against the baseline C++ Legion

implementation running on up to 8 nodes on Certainty. Notably, the fully-optimized

Regent implementation—which is written in a straightforward way with no use of

explicit vectors or vector intrinsics, and is less than half the total number of lines

of code—achieves performance comparable to the manually vectorized C++ code,

exceeding the performance that can be achieved by using the LLVM 3.5 vectorizer

alone.

PENNANT

Figure 8.4b evaluates Regent against an OpenMP implementation of PENNANT for

strong scaling a problem containing approximately 2.6M zones.

Regent performs better than OpenMP for all core counts up to 10, surpassing

OpenMP by 8% at 10 cores. Starting at 12 cores, Regent performance degrades

because the additional compute threads interfere with threads Legion uses for dynamic
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Figure 8.4: Initial strong-scaling performance.

dependence analysis and data movement. The Legion runtime is also unable to

exclusively allocate physical cores for each thread and abandons pinning altogether,

leading to increased interference between application threads.

PENNANT performance is sensitive to the NUMA architecture of the machine.

OpenMP performance was substantially impacted by CPU affinity, and a manual

assignment of threads to cores was needed for optimal performance. Regent automati-

cally binds threads to cores when possible and round robins threads between NUMA
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domains, and thus performs well with minimal manual tuning.

MiniAero

Figures 8.4c and 8.4d compare strong scaling performance between a Regent imple-

mentation and the baseline MPI+Kokkos version on a problem size with 4M cells and

13M faces running on up to 4 nodes on Certainty.

Regent outperforms MPI+Kokkos on 8 cores by a factor of 2.8X through the use of

a hybrid SOA-AOS data layout, as noted in Section 8.1.3. The improved data layout

substantially boosts cache reuse and improves utilization of memory bandwidth.

8.3 Control Replication Experiments

We evaluate performance and scalability of control replication in the context of Regent

with the five applications described in Section 8.1. For each application we consider

a Regent implementation with and without control replication and when available a

reference implementation written in MPI or a flavor of MPI+X.

For each application, we report weak scaling performance on up to 1024 nodes

of the Piz Daint supercomputer [7], a Cray XC50 system. Each node has an Intel

Xeon E5-2690 v3 CPU (with 12 physical cores) and 64 GB of memory. Legion was

compiled with GCC 5.3.0. The reference codes were compiled with the Intel C/C++

compiler 17.0.1. Regent used LLVM for code generation: version 3.8.1 for Stencil and

PENNANT and 3.6.2 for MiniAero and Circuit.

Finally, we report the running times of the dynamic region intersections for each

of the applications at 64 and 1024 nodes.

8.3.1 Circuit

We evaluate the weak scaling performance of a sparse circuit simulation based on

[13]. The implicitly parallel version from [13] was already shown to be substantially

communication bound at 32 nodes and would not have scaled to significantly more

nodes, regardless of the implementation technique. The input for this problem was a
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Figure 8.5: Weak scaling for Circuit.

randomly generated sparse graph with 100k edges and 25k vertices per compute node

as described in Section 8.1.1; the application was otherwise identical to the original.

Figure 8.5 shows weak scaling performance for the simulation up to 1024 nodes. (In

the legend control replication is abbreviated as CR.) Regent with control replication

achieves 98% parallel efficiency at 1024 nodes. Regent without control replication

matches this performance at small node counts (in this case up to 16 nodes) but

then efficiency begins to drop rapidly as the overhead of having a single master task

launching many subtasks becomes dominant, as discussed in Section 1.2.

8.3.2 PENNANT

Figure 8.6 shows weak scaling performance for PENNANT on up to 1024 nodes,

using a problem size of 7.4M zones per node. The single-node performance of the

Regent implementation is less than the reference because the underlying Legion

runtime requires a core be dedicated to analysis of tasks. This effect is noticeable on

PENNANT because, due to the cache blocking optimization in the implementation
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Figure 8.6: Weak scaling for PENNANT.

of PENNANT (described in Section 8.1.2), the code is mostly compute-bound. This

optimization impacts even the data structure layouts, as the (otherwise unordered)

mesh elements are grouped into chunks to be processed together. In spite of this,

control replication applied seamlessly to the code, as the details of the cache blocking

optimization are limited to the structure of the region tree (which subsumes the chunk

structure of the original code) and the bodies of tasks (whose details are accurately

summarized by the privileges declared in the task declaration).

However, the performance gap which is visible at a single node closes at larger

node counts as Regent is better able to achieve asynchronous execution to hide the

latency of the global scalar reduction to compute the dt in the next time step of

the application. At 1024 nodes, control replication achieves 87% parallel efficiency,

compared to 82% for MPI and 64% for MPI+OpenMP.
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Figure 8.7: Weak scaling for MiniAero.

8.3.3 MiniAero

As described in Section 8.1.3, MiniAero is a 3D unstructured mesh proxy application

that includes an explicit solver for the compressible Navier-Stokes equations. The

reference is written in MPI+Kokkos. In these experiments, we ran the reference in

two configurations: one MPI rank per core, and one MPI rank per node (using Kokkos

support for intra-node parallelism).

Figure 8.7 shows weak scaling absolute performance for the various implementations

of MiniAero on a problem size of 512k cells per node. As described in Section 8.2.3,

Regent out-performs the reference MPI+Kokkos implementations of MiniAero on

a single node, mostly by leveraging the improved hybrid data layout features of

Legion [14].

Control replication achieves slightly over 100% parallel efficiency at 1024 nodes

due to variability in the performance of individual nodes; as before, Regent without

control replication struggles to scale beyond a modest number of nodes. Although the
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Figure 8.8: Weak scaling for Stencil.

rank per node configuration of the MPI+Kokkos reference provides initial benefits to

single-node performance, performance eventually drops to the level of the rank per

core configuration.

8.3.4 Stencil

We test the Stencil benchmark from the PRK suite in its default configuration: a

radius-2 star-shaped stencil on a grid of double-precision floating point values. We

evaluate weak scaling performance on 40k2 grid points per node, comparing Regent

with and without control replication against the MPI and MPI+OpenMP reference

codes provided by PRK. Both reference codes require square inputs and thus were

run only at node counts that were even powers of two.

As noted in Section 3.1, all analysis for control replication was performed at the

task and region level. Control replication was able to optimize code containing affine

access patterns, without requiring any specific support for affine reasoning in the
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Figure 8.9: Weak scaling for Soleil-X.

compiler.

Figure 8.8 shows weak scaling performance for Stencil up to 1024 nodes. Control

replication achieved 99% parallel efficiency at 1024 nodes, whereas Regent without

control replication rapidly drops in efficiency when the overhead of launching an

increasing number of subtasks begins to dominate the time to execute those subtasks.

8.3.5 Soleil-X

Figure 8.9 shows the weak scaling performance of Soleil-X on up to 1024 nodes.

Soleil-X was configured to use a grid of 2563 cells and 1M particles per machine node.

We ran Soleil-X in two configurations: with a task per core, as programs normally

do in Regent; and with a task per node, using Regent’s support for OpenMP. Note

that this did not involve a C++ compiler in any way, or the use of OpenMP pragmas.

Instead, when configured to use OpenMP, the Regent compiler directly generates

calls to the OpenMP ABI for loops within tasks that can be executed in parallel (as

described in Section 5.8). Notably, Regent only optimizes loops in this way when it can

prove that the iterations are safe to execute in parallel, unlike traditional OpenMP, in
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Application Nodes Shallow (ms) Complete (ms)

Circuit
64 7.8 2.7

1024 143 4.7

MiniAero
64 15 17

1024 259 43

PENNANT
64 6.8 14

1024 125 124

Stencil
64 2.7 0.4

1024 78 1.3

Table 8.1: Running times for region intersections on each application at 64 and 1024
nodes.

which user-provided pragmas are trusted and thus unsound. Furthermore, on Legion,

the OpenMP ABI is provided by Realm, Legion’s performance portability layer. Thus

for the purposes of Regent, OpenMP is used to expose parallelism below the level of

Legion, and permits Regent to reduce the number of tasks that must be exposed to

the Legion runtime.

Soleil-X achieved 77% parallel efficiency at 1024 nodes with Regent support for

OpenMP enabled. Without OpenMP support Regent achieves similar parallel efficiency

up to 512 nodes. At 1024 nodes, the configuration without OpenMP experiences a

crash in the GASNet active messaging layer used by Legion.

Soleil-X also uses a dynamic time step as described previously with respect to

PENNANT, requiring the use of a scalar reduction to compute dt for each time step.

8.3.6 Dynamic Intersections

As described in Section 3.3.3, dynamic region intersections are computed prior to

launching a set of shard tasks in order to identify the communication patterns and

precise data movement required for control-replicated execution. Table 8.1 reports the

running times of the intersection operations measured during the above experiments

while running on 64 and 1024 nodes. Shallow intersections are performed on a single

node to determine the approximate communication pattern (but not the precise sets

of elements that require communication); these required at most 259 ms at 1024 nodes

(15 ms at 64 nodes). Complete intersections are then performed in parallel on each
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node to determine the precise sets of elements that must be communicated with other

nodes; these took at most 124 ms. Both times are much less than the typical running

times of the applications themselves, which are often minutes to hours.



Chapter 9

Related Work

Parallelism research has a long history, both within the high performance computing

community and more broadly. To keep the following discussion manageable, we focus

on two areas. First, in Section 9.1, we consider parallel programming systems which

provide implicit parallelism, where the system is responsible to some degree for the

management of parallelism in the application. Second, Section 9.2 surveys explicitly

parallel programming systems where parallelism is instead the responsibility of the

user. Regent provides aspects of both styles, though the primary thrust of the design

and our key contributions focus on the implicitly parallel aspects of the language.

9.1 Implicit Parallelism

Broadly speaking, implicitly parallel programming models are ones which provide

some form of sequential (imperative, functional or declarative) semantics. The system

is responsible, at least to some degree, for finding parallelism in the program, and for

generating correct parallel code that obeys the original program semantics. As a result,

implicitly parallel programming models typically rely at least to some degree on static

and/or dynamic program analysis to determine what parallelism is available in the

program. Note that parallelism in such programming models may still be user-visible

to some degree (e.g. the user may be asked to identify the portions of code that are

appropriate for parallel execution), though typically the use of sequential semantics

106
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isolates the user from traditional pitfalls of explicitly parallel programming as data

races and deadlocks.

9.1.1 Automatic Parallelizing Compilers

Automatic parallelizing compilers [19,37,43] attempt to generate parallel code from

programs written in traditional, sequential programming languages. This problem

has proven to be extremely challenging when the programs in question were written

without regard to parallelism—i.e. so-called “dusty-deck” programs, usually written in

Fortran. More success has been achieved for sequential programs in restricted domains.

In particular, programs consisting of affine loops are amenable program analysis via the

polyhedral method and can be automatically optimized by a compiler for distributed

memory, as shown in [21]. However, in practice this limitation is quite restrictive,

and many high-performance computing applications such as unstructured mesh codes

cannot be expressed in this form. The general problem remains unsolved for a static

compiler analysis and thus some form of dynamic analysis, changes to the programming

model, or both, are required. Regent uses a combination of carefully selected language

features and a hybrid static/dynamic program analysis and optimization, allowing it

to effectively address codes such as simulations on unstructured meshes.

9.1.2 Inspector/Executor Methods

Inspector/executor (I/E) methods have been used to compile a class of sequential

programs with affine loops and irregular accesses for distributed memory [53, 54]. As

in control replication, a necessary condition for I/E methods is that the memory

access patterns are fixed within the loop, so that the inspector need only be run

once. Use of an inspector allows the read/write sets of program statements to

be determined dynamically when the necessary static analysis is infeasible in the

underlying programming language, enabling distributed, parallel execution of codes

written in conventional languages. This approach has been demonstrated to scale to

256 cores. However, the time and space requirements of the inspector limit scalability

at very large node counts. Also, the I/E approach relies on generic partitioning
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algorithms such as automatic graph partitioning [26,60].

Kwon et al. describe a technique for compiling OpenMP programs with regular

accesses to MPI code [47] that is similar to the inspector/executor method. A

hybrid static/dynamic analysis is used to determine the set of elements accessed by

each parallel loop. For efficiency, the dynamic analysis maintains a bounded list of

rectangular section fragments at communication points. As a result, non-affine accesses

cause analysis imprecision that results in replicated data, increased communication,

and limited scalability. The approach has been demonstrated to scale to 64 cores.

Like the two approaches above, Regent’s control replication optimization uses a

combined static/dynamic analysis to obtain precise information about access patterns.

At a high level, the key difference is that control replication leverages a programming

model with explicit support for coarse-grain operations (tasks), data partitioning (of

regions into subregions), and the simultaneous use of multiple partitions of the same

data. Control replication performs analysis at this coarsened level rather than at the

level of individual loop iterations, resulting in a more efficient dynamic analysis and in-

memory representation of the access patterns of each loop without any loss of precision.

Furthermore, hierarchically nested partitions enable control replication to skip analysis

at runtime for data elements not involved in communication (further reducing memory

usage for the analysis). Finally, explicit language support for partitioning allows

control replication to leverage application-specific partitioning algorithms, which are

often more efficient and yield better results than generic algorithms. As a result,

control replication is able to support more complex access patterns more efficiently,

resulting in better scalability.

9.1.3 Loop-Level Parallelism

In many parallel programs, it is common for the available parallelism to be contained

in loops. OpenMP [31] is a language extension for exploiting the form of parallelism

that is now in widespread use in high-performance computing. Programs in traditional

sequential languages can be incrementally converted into OpenMP programs by adding

compiler directives to loops instructing the compiler to execute these loops in parallel.
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OpenMP is explicitly unsound and does not attempt (and in fact cannot check) the

correctness of user-specified compiler directives. In general, OpenMP relies heavily

on shared memory to avoid the need for the user to describe or the compiler to

understand data movement in the application. OpenMP was originally intended for

use in single-node, shared-memory machines. Distributed implementations of OpenMP

are possible but challenging; of these the most successful to date has been the one by

Kwon et al. described in Section 9.1.2.

A number of other efforts to support OpenMP on distributed-memory machines tar-

get software distributed shared-memory (DSM) systems [11, 39, 59]. These approaches

have reduced implementation complexity compared to approaches such as I/E that

leverage dedicated compiler and runtime technology, but have limited scalability due

to the limitations of general-purpose, page-based DSM systems.

In contrast, Regent leverages a sound type system [68,70], and thus can offer more

aggressive static and dynamic optimizations, allowing Regent to execute seamlessly

and efficiently in a distributed environment despite providing sequential semantics.

9.1.4 Fork-Join Parallelism

Fork-join parallelism is a style of parallelism where the application forks to execute

parallel work and then joins to wait on the completion of that work. As with Regent

in the absence of control replication, fork-join parallelism suffers from a sequential

bottleneck on the repeated creation and destruction of parallel workers during fork

and join operations. A compiler-assisted approach for generating SPMD code from

fork-join parallel programs—via the insertion of barriers—is well known [30]. However,

this approach depends on the use of shared memory, and generalizing the approach

to distributed memory requires a precise analysis of the memory accesses in the

application. It is exactly this analysis of memory accesses that Regent addresses via

control replication. By exploiting the structure of user-defined partitions, control

replication is able to achieve an effective and reliable transformation of implicitly

parallel programs into SPMD code for distributed-memory machines. In addition,

control replication uses point-to-point synchronization (rather than barriers), and
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preserves task parallelism to the extent that it exists in the application.

Cilk [2] is a well-known language for fork-join parallelism on shared-memory

machines. Cilk extends the C language with the keywords spawn to fork a task and

sync to join on forked tasks. The sequence of spawn and sync statements can be

viewed as defining a dependence graph between tasks, though the structures that

can be expressed are limited as the sync call blocks on all locally spawned tasks and

does not permit the specification of individual dependencies between tasks. Memory

accesses are not tracked by Cilk, making the language unsound, and thus the user is

responsible for ensuring that the necessary synchronization is in place; otherwise data

races may occur. Previous versions of Cilk supported distributed-memory machines

but with the restriction that there be no memory accesses at all except to parameters

or return values of tasks, severely limiting the expressiveness of the programming

model. In contrast, Regent employs a sound type in which the privileges (and thus

side-effects) of tasks are explicit, allowing the implementation to seamlessly provide

distributed-memory execution.

Cilk employs a work-stealing scheduler for tasks. This is also available in Regent

and is exposed via the mapper; i.e. in Regent the user can choose to use work-stealing

for tasks, or another generic or application-specific placement scheme, at their option.

9.1.5 Data Parallelism

Data-parallel languages are a subclass of general implicitly parallel languages that

restrict programs to data-parallel operators over collections of objects such as arrays.

Within the constraints of this subset, data parallel languages can make it very easy

to express certain classes of parallel algorithms and, as with other implicitly parallel

languages, avoid by construction pitfalls of explicit parallel programming such as data

races and deadlocks.

Efforts in data-parallel languages such as High Performance Fortran (HPF) [45,56]

pioneered compilation techniques for a variety of machines, including distributed-

memory. In HPF, a single (conceptual) thread of control creates implicit data-

parallelism by specifying operations over entire arrays in a manner similar to traditional
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Fortran. This data parallelism is then mapped to a distributed-memory system via

explicit user-specified data distributions of the arrays—though the compiler is still

responsible for inferring shadow regions (i.e. halos that must be communicated)

from array accesses. Several implementations of HPF achieved good scalability on

structured application [58, 61]. The HPF specification provides extensions for very

limited support for sparse data in CSR format (and other similar formats), but no

implementations are available for these extensions and no extensions address more

general unstructured applications. Regent provides support for both structured and

unstructured applications, and Regent’s support for multiple partitions enable a more

effective hybrid static/dynamic analysis of the intersections of partitions, in Regent’s

control replication optimization, which serve a similar purpose to HPF’s shadow

regions.

The Chapel [27] language supports a variety of styles of parallelism, including

implicit data parallelism and explicit PGAS-style parallelism. This multiresolution

design reduces the burden placed on the compiler to optimize Chapel’s data parallel

subset because users can incrementally switch to other forms of parallelism as needed.

However, use of Chapel’s explicitly parallel features expose users to the hazards of

traditional explicitly parallel programming.

Compared to Regent, Chapel’s data parallel subset (which is most similar to

Regent’s implicit parallelism) only supports a single, static distribution of data, and

limited task parallelism. Regent’s support for multiple and hierarchical partitions is

critical for control replication to optimize implicitly parallel programs for efficient

execution on distributed memory machines.

9.1.6 Functional Parallelism

Parallelism has also been explored in the context of functional programming languages.

Functional languages provide a number of advantages in this regard. First, programs

are composed of functions that are side-effect free, and thus any functional programs

(not just those that are data-parallel) are trivially safe to execute in parallel. Second,

support for first-class and higher-order functions leads to a natural expression of
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parallel pattern such as map and reduce. In particular, these patterns enable certain

forms of data parallelism to be expressed naturally.

MapReduce [32] and Spark [74] are functional programming models that provide

support for data parallelism in distributed-memory environments. MapReduce pro-

vides support for only two operators, map and reduce, and only in a very specific

configuration where each function is only called once, and in a specific order (map

and then reduce). Despite the restrictiveness of this model, MapReduce is useful for a

variety of data processing workloads. However, for iterative applications, MapReduce

can be very inefficient as data is read from persistent storage (such as disk) on each it-

eration. Spark provides a broader set of operators and is designed so that intermediate

results in iterative applications can be maintained in memory and need not be written

to disk. MapReduce and Spark were both originally intended for use in industrial data

centers, and thus have been tuned for applications with very different performance

characteristics and more coarse-grained tasks than typical high-performance computing

applications. In order to efficiently parallelize an application, tasks in MapReduce

and Spark must generally be on the order of seconds or larger, whereas Regent and

other systems for high-performance computing are generally optimized for tasks on

the order of milliseconds or tens of milliseconds. Regent (with control replication) has

been demonstrated to efficiently schedule tasks of at this granularity on 1024 nodes

(12288 cores).

The use of execution templates to reduce control overhead [49] has been explored

as a way to improve the scalability of a centralized scheduler. Execution templates

can be created, modified, and executed dynamically. Thus execution templates permit

substantially more flexibility than Regent’s control replication optimization. However,

execution templates still require a centralized control to trigger execution, and thus

the overhead is O(N) (or O(logN)) where N is the number of nodes rather than O(1)

as it is in Regent with control replication.
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9.1.7 Nested Parallelism

Nesl [18] is a language for nested data parallelism. Nested parallelism provides two

advantages over traditional (flat) data parallelism. First, for applications with irregular

parallelism (where the iterations of the outermost parallel loop are themselves parallel

and take variable time), nested parallel implementations may be able to achieve

superior performance by exploiting better load balancing across processors. Second,

nested parallel languages promote composability of parallelism, which is increasingly

important as supercomputer architectures make increasing uses of deep memory

hierarchies.

Regent makes heavy use of nested data and task parallelism. Tasks may recursively

launch subtasks to expose additional parallelism to the system. Control replication

and other Regent optimizations apply locally to a task and thus are fully composable

with nested parallelism.

9.1.8 Implicit Task Parallelism

Task-based parallel systems attempt to overcome the limitations of traditional data

parallel languages by focusing on parallelism at the granularity of user-defined tasks.

Although there is considerable variation in the design of these systems, the unifying

feature of these systems is a directed acyclic graph of dependencies between tasks.

This dependence graph captures both data and task parallelism in an application and

leads naturally to asynchronous execution and aggregation of data transfers, both of

which are essential for performance on modern supercomputers. A key question in

the design of task-based systems is whether the specification of the dependence graph

is implicit or explicit. This section describes implicit task-parallel systems; explicit

systems are described in Section 9.2.3.

Among implicit task-parallel systems, dependencies between tasks are typically

determined automatically based on the arguments passed to tasks along with privileges

declared on task arguments. A key design question for these systems is how precisely

to track accesses to data. In particular, does the system support multiple partitions

of a given region, or only a single disjoint partition? We will first consider systems
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that support multiple partitions.

Models with Multiple Partitioning

Legion [13] is a runtime system for implicit task parallelism that leverages dynamic

program analysis to compute a dynamic dependence graph from programs with

sequential semantics. Legion provides extensive support for data partitioning [68, 70],

and in particular supports dynamic, multiple, hierarchical, and overlapping partitions

of a given region. This data model is very expressive and allows the programmer to

specify with precision the exact data required in each task. As a result, the dependence

graph Legion computes is an accurate representation of the data movement in the

program, enabling efficient distributed execution. However, due to its implementation

as a runtime system, implicitly parallel Legion programs suffer from a sequential

bottleneck in the analysis of tasks (and particularly the data usage of tasks) that can

inhibit scalability at large numbers of nodes.

Legion also supports the use of more involved explicit communication constructs

that enable scaling to very large node counts [14]. However, the explicit approach

can be time-consuming and error-prone, and was identified in a recent study [15] as a

challenge for this class of programming systems.

Regent targets the Legion runtime, but provides additional static checks that are

not possible in a dynamic runtime system written in a traditional language. Regent

leverages these static guarantees to offer control replication, which distributed Legion’s

dynamic analysis across multiple nodes so the overhead remains constant in the number

of nodes. Regent also allows the explicit style, although implicit parallelism is strongly

preferred. Regent (with control replication) can be seen as greatly increasing the

performance range of the implicit style, allowing more whole codes and subsystems of

codes to be written in this more productive and more easily maintained style.

Sequoia [35] is a language for array-based implicitly task-parallel programs. Sequoia

supports multiple, hierarchical, and aliased partitions of an array; however in Sequoia

the task tree and the sizes of arrays and partitions must be completely determined at

compile-time. The Sequoia compiler [46] thus has access to complete static information

about the structure of the program and data and can generate efficient code for
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distributed-memory targeting a low-level runtime system [41]. A number of additional

features allow the language to express certain classes of irregular parallelism [12],

however the data model of Sequoia is still restrictive and does not adapt well to

unstructured applications. This is in contrast to Regent, which allows substantially

more flexible behavior: in particular, the number of tasks, values of arguments to tasks,

and precise dependencies (and exact set of elements that must be communicated)

between tasks are all permitted to be dynamic, even when using control replication.

Sequoia, like Regent, provides a user-visible mapping interface which allows the

user to tune the execution of a Sequoia application. Unlike Regent, a mapping in

Sequoia is a static file and must be provided as an input to the compiler. Sequoia

provides an autotuner for the mapping interface [55] that is able to relieve the user

of the burden of manually mapping an application. In future work we would like to

explore similar facilities for Regent.

DPJ [20] is a language for region-based implicit task parallelism based on Java.

DPJ is similar to Regent in that it employs a region-based type system to track the

effects of tasks. However, unlike Regent, DPJ’s regions are not first class and are

simply static names for sets of objects. Parallelism is identified statically by the

compiler, and the compiler must be conservative in cases where disjointness cannot be

statically proven. As a result, DPJ’s support for partitioning is also more restrictive.

DPJ permits multiple, hierarchical partitions of arrays, but not aliased partitions,

and the set of supported partitioning operators is very limited. DPJ was developed

for shared-memory systems and has not been demonstrated on distributed-memory

machines.

Models with Single Partitioning

In contrast to the above, several task-based parallel systems allow only a single,

disjoint partition of a given region (or equivalently, no partitioning, in which case all

objects are disjoint by construction). This approach favors implementation simplicity;

in particular, a subregion may be identified by the index of the first element of the

subregion, making many of the sophisticated checks in Regent unnecessary. However,

this decision comes with a cost, as it significantly reduces the expressivity of the model.
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This makes it substantially more difficult to describe certain classes of applications in

a natural way, and critically reduces the precision of the information the system has

about data movement in the application.

StarPU [10] is a runtime system for implicit task parallelism on single (possibly

heterogeneous) node. Task dependencies are computed based on privileges and

arguments to tasks. Two extensions to StarPU enable distributed execution. StarPU-

MPI [9] adds support for explicit message passing via MPI. This approach exposes

the programmer to the hazards of explicit distributed programming. An alternative

extension generates MPI calls implicitly based on data usage in the program [8].

However, in this approach the sequence of tasks must be executed on all nodes, and

thus the time to submit tasks is not O(1) with the number of nodes (as with control

replication) but grows with the number of nodes. StarPU supports only a single

partition of a region at a time; this partition may be changed during the execution

of the program but must be changed simultaneously on all nodes, requiring global

communication to shuffle the data in addition to a global synchronization point. In

contrast, Regent supports multiple simultaneous partitions and only requires data

movement when the data is actually required by a remote task.

PaRSEC [22] is a runtime system for explicit task parallelism with a frontend

compiler that adds support for implicit task parallelism. The frontend compiler

takes as input programs with affine accesses over arrays and generates an explicit

task-parallel program targeted at the PaRSEC runtime API. Unlike Regent, PaRSEC

does not provide support for implicit task parallelism for more general languages, thus

limiting the extent to which the approach can be applied to programs with sequential

semantics. PaRSEC only supports a single, disjoint partition of arrays.

OpenMP version 4.0 [4] provides support for shared-memory task-based parallelism

in traditional languages via compiler directives. OpenMP tasks declare privileges in,

out, or inout on task parameters. Dependencies over tasks are computed based on the

privileges and the values of arguments passed to tasks; arguments may be pointers

to individual elements or dense array sections. However, as with OpenMP’s parallel

loop constructs, programmer assertions about task privileges are implicitly trusted,

and unlike Regent the compiler does not and cannot check these assertions soundly.
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Arguments to tasks are not permitted to overlap; thus OpenMP’s data model is

equivalent to a single, disjoint partitioning of data. For distributed-memory execution,

OpenMP tasks must be composed with an explicitly distributed programming model

such as MPI. Direct implementations of OpenMP with support for tasks on distributed

memory have not been demonstrated.

Jade [57] is an older programming language for implicit task parallelism. Jade

does not support data partitioning; instead objects are the units of data movement

in the system. This is equivalent to a system that allows only a single, disjoint

partition of a given region. Jade natively supports distributed-memory execution,

but due to inefficiency inherent in a model with only single partitioning has not been

demonstrated to scale efficiently on modern supercomputers. Regent employs multiple

partitions specifically to address these challenges.

9.1.9 Speculative Parallelism

Thread-level speculation (TLS) [52,65] is a hybrid hardware and software approach

to parallelizing sequential programs. In TLS, iterations of loops run speculatively

in parallel, even when the compiler cannot prove statically that it is safe to do

so. Conflicting memory accesses are caught dynamically during execution and the

iterations that issued those accesses rolled back and re-executed. The mechanism for

determining conflicts relies on hardware support and piggybacks on the hardware’s

cache coherence mechanism. Therefore, TLS can be expected to scale as well as cache

coherence protocols in multi-core processors, i.e. to single nodes but not to the scale

of modern supercomputers. Regent’s control replication places more restrictions on

the program source, but in exchange provides scalability to large numbers of nodes.

9.1.10 Domain-Specific Languages

Domain-specific languages (DSLs) have a number of potential advantages over general-

purpose languages and runtimes. In particular, by restricting the input domain of

the system, DSL implementations may be able to exploit deep domain knowledge to

automatically parallelize programs with sequential or declarative semantics. However,
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DSLs by definition restrict the input domain of the language and thus any given DSL

cannot be expected to be applicable to all possible problems of interest.

Ebb [16] is a DSL for physical simulations. Ebb supports forall-style parallel loops

and is able to generate code for CPUs and GPUs via LLVM. Because Ebb and Regent

are both implemented in Terra [33], an implementation of Ebb using Regent is also

straightforward. Ebb programs are able to automatically take advantage of control

replication for efficient execution on distributed-memory machines.

Scout [50] is an embedded DSL in C++ that supports forall-style parallel loops.

Scout uses LLVM for code generation for CPUs and GPUs and leverages Legion for

distributed execution.

Delite [23] is a compiler framework and runtime for embedded DSLs on heteroge-

neous architectures for which a number of DSLs have been implemented [40, 66]. The

Delite compiler framework provides support for parallel patterns that can implemented

efficiently in hardware, in addition to general-purpose and domain-specific optimiza-

tions on those parallel patterns. The Delite backend compiler and runtime provide

support for code generation and execution on heterogeneous machines, respectively.

9.2 Explicit Parallelism

Explicitly parallel programming models are ones that provide explicitly parallel pro-

gram semantics. In general, such systems expose the user to the various and well-known

pitfalls of traditional parallel programming such as data races and deadlocks, and

frequently suffer from inferior ease of use compared to implicitly parallel programming

models. The trade-off justifying this cost is that often these programming models

are designed to offer as close to bare-metal performance as possible. The system

implementation offers no help to the user for finding parallelism in the program, but

this also means that the system cannot fail to find parallelism (e.g. due to an overly

conservative compiler optimization) because the parallelism is explicitly specified by

the user. It is a goal of Regent to provide superior ease of use (via sequential semantics)

while maintaining performance comparable to these systems at least for key classes of

codes of interest in high-performance scientific computing.
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9.2.1 Message Passing

Message passing, particularly via MPI [64], is the dominant programming paradigm on

supercomputers today. MPI is a SPMD programming model where multiple copies, or

ranks, of a program execute simultaneously (usually one rank per physical processor).

The address space in message passing models is not shared between ranks, and thus

the user must explicitly distribute data between the various local memories of the

ranks. Somewhat ironically, this distribution—though it must be explicit in the user’s

mind when designing the program—is not made explicit in the text of the program

source, thus compounding issues already inherent in explicit parallel and distributed

programming. The user is responsible for avoiding well-known pitfalls of explicitly

parallel and distributed programming such as deadlocks, mismatched message sends

and receives, non-determinism in control flow, etc.

Achieving overlap between communication and computation can be a challenge in

message passing models such as MPI. The asynchronous APIs provided by MPI require

the user to explicitly find other code to execute while waiting for the asynchronous

operation to complete. By definition, this code must be unrelated to asynchronous

operation, otherwise it would depend on the result of that operation. As a result, the

proper use of asynchronous constructs in MPI requires that the user apply contortions

to the code that can be particularly damaging to the readability and maintainability

of the code. In many cases, production applications select to prefer maintainability

over extracting the last ounce of performance from the code, and thus may leave

performance on the table [14]. Regent provides sequential semantics, but the underlying

execution proceeds by constructing a dependence graph of tasks which can be executed

in a deferred fashion, thus providing both better ease of use and potentially superior

performance.

When used in heterogeneous supercomputers, MPI is typically augmented to

produce various MPI+X programming models. For example, MPI+OpenMP might

be used in machines with multiple cores per node and MPI+CUDA might be used

in machines with NVIDIA GPUs. These hybrid models introduce additional com-

plications. Data movement can be especially challenging. For performance, it is

desirable to perform data movement asynchronously and to overlap it with useful
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computation. By definition, the only computations that can be overlapped must

be unrelated to the data transfers, thus causing contortions to the code when this

optimization is applied by hand. In an MPI+X model, this data transfer may need to

be performed in two parts: for example when using MPI+CUDA for GPUs separate

APIs are required for asynchronous copies via MPI and CUDA and their progress

must be monitored separately. Furthermore, the node-level programming model may

introduce additional synchronization points, such as OpenMP does at the end of each

parallel loop, potentially negating any gains made. As a result, it can be challenging

to properly exploit the performance benefits of heterogeneous supercomputers with

MPI+X. By targeting Legion, Regent is able to leverage a runtime system that fully

manages data transfers to and from any heterogeneous processors, improving the

performance portability of codes to such systems.

9.2.2 Partitioned Global Address Space

Partitioned Global Address Space (PGAS) languages such as Split-C [29], UPC [5] and

Titanium [3] address some of the pitfalls of explicit message passing. Unlike message

passing models, PGAS languages support a global address space. Thus pointers to

data are valid anywhere in the machine, though the data might not be present in

local memory. Attempts to access non-local data typically result in a message to the

remote machine; if these accesses are to individual elements, the accesses may be

very inefficient. Regent is similar to PGAS models in that the names of regions are

valid anywhere in the machine, and pointers to elements inside regions are effectively

indices that are also valid anywhere. Unlike PGAS models, Regent focuses heavily

on asynchronous execution and bulk data transfers to achieve efficient execution on

modern supercomputers. Regent also provides sequential semantics by default and

avoid pitfalls of explicitly parallel programming present in PGAS models.

9.2.3 Explicit Task Parallelism

Realm [69] and OCR [6] are runtime systems for explicit task-based parallelism on

heterogeneous distributed-memory machines. StarPU [10] and PaRSEC [22] also
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provide an explicitly task-parallel layer, though most end users are expected to use

the implicitly task-parallel interfaces to these systems. Tasks in these models take

events as preconditions and produce events as postconditions. These events may be

used by the application to construct a dependence graph over tasks. An advantage of

this approach is that the overhead of launching tasks is reduced as there is no built-in

dynamic analysis to determine the dependence graph. However, due to the nature

of the task abstraction, the runtime system itself has no knowledge of the desired

behavior of the underlying application and thus has no way to ensure correct execution

of an application written for its interface. The programmer is thus exposed to most of

the traditional hazards of explicitly parallel programming. In practice, these systems

are not designed to be targeted directly by the end user but by the designer of a

higher-level system such as Regent which will typically take responsibility for the

discovery of dependencies between tasks.

Concurrent Collections (CnC) [24] is a graph specification language for explicit

task parallelism. Unlike the systems above, where tasks and dependencies are created

dynamically via runtime calls, in CnC the dependence graph is specified statically in

a graph specification language. To capture certain forms of dynamic behavior, the

CnC graph describes not only data dependencies but also control dependencies. Tasks

themselves are specified separately and are not able to be checked by the system for

adherence to the CnC graph specification.

Uintah [51] is a domain-specific runtime system for programs operating on struc-

tured meshes. Uintah supports tasks that operate patches of a mesh, and manages

asynchronous execution and data movement between tasks. Dependencies between

tasks are specified explicitly and are the responsibility of the user, though certain

classes of bugs such as cycles in the dependence graph can be caught automatically

during program execution.

9.2.4 Places

X10 [28] is an explicitly parallel programming language with places and hierarchical

tasks. Places identify distinct local memories and the compute resources associated
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with them. As with PGAS models, pointers to data are valid anywhere in the machine;

however unlike PGAS models only local data may be accessed directly, and remote

data must be accessed by performing a task launch on the remote node. Places

support the launching of asynchronous tasks that may explicitly move computation

and data around the machine. As a result, programming with places is explicit parallel

programming.

Flat X10 [17] is a subset of this language that restricts programs to a two-level task

hierarchy where the top level consists of forall-style parallel loops. A compiler for Flat

X10 is able to transform the program into a SPMD-style X10 program with explicit

synchronization between tasks. However, as the original Flat X10 program already

contains explicit communication (in the form of remote task launches), the compiler

need not make changes to the structure of communication in the program. In contrast,

control replication is able to automatically generate efficient explicit communication

for an implicitly parallel program with implicit data movement.

9.2.5 Actors

Charm++ [44] is an actor-based programming model for high-performance computing.

Actors represent units of locally-addressable data and methods that may be invoked

on that data. Actors may be moved dynamically between nodes for load-balancing

purposes. Actors are similar to tasks in that they lead to a natural expression of task

parallelism in the application, and the chain of method calls between actors can be

seen as forming a dependence graph of sorts. Actor-based programming is explicitly

parallel programming and subject to the normal pitfalls therein.



Chapter 10

Conclusion

This thesis has presented Regent, a programming language for task-based implicit

(and explicit) parallelism inspired by the Legion programming model. Regent uses

a combination of static and dynamic analysis, compile-time program transformation

and runtime scheduling to achieve performance on modern supercomputers. For

several classes of programs of interest in high-performance scientific computing, such

as unstructured mesh codes, Regent is the first (to the best of our knowledge) to

demonstrate practical levels of scalability (up to 1024 nodes and 12288 cores) for

implicitly parallel versions of these codes. Essential to these results are a number

of static optimizations performed by the Regent compiler, and in particular a novel

control replication optimization that automatically transforms implicitly parallel

programs into scalable SPMD-style codes.

Regent has been used to develop several mini-applications, as the backend for a

DSL for grid and particle based codes, and has even served as the basis of a Stanford

course in parallel programming. In this time, we have validated that Regent works for

the use cases for which it was intended. We have also identified a number of use cases

which require additional thought and investigation.

Today, Regent users still need to write custom mappers in C++. This is something

that affects many first-time users as they begin performance runs of Regent applications.

The C++ mapping interface is verbose, which is unsurprising, given the power it

exposes, and that it is expressed in C++. For a while now, we have thought it would

123



CHAPTER 10. CONCLUSION 124

make sense to design a complementary language to Regent for writing mappers. Such a

language could radically reduce the burden of tuning a Regent application for different

architectures.

Regent’s choice to target Legion has allowed very rapid development of the language.

However, Legion’s dynamic analysis also imposes a cost that has at times been

limiting—thus the focus on control replication to make Regent applications scale.

Having demonstrated that control replication works effectively in Regent, we are

now investigating whether a similar optimization can be provided directly by the

Legion runtime. A difference between Regent and Legion is that in order for Legion

to effectively apply control replication, changes will need to be made to the program

source. For example, it is only reasonable to dynamically control replicate programs

already phrased in terms of index launches. There will likely be other restrictions,

and in general these will be properties that Legion cannot check on its own, but will

rely on the programmer to maintain. In this sense, while we hope to provide some

of the same performance benefits in Legion proper, the soundness benefits can only

come from a compiled language such as Regent.

Another possible avenue of investigation would be to attempt to generate a static

dataflow program, bypassing Legion’s dynamic analysis (at least within the context of

a task) and generating code directly to Realm, Legion’s underlying execution layer.

Regent’s control replication optimization, as a by-product, produces what can be seen

as a static representation of the program’s dataflow. While control replication itself

only uses this to generate explicit copies and synchronization, a similar optimization

could potentially generate direct calls into a lower-level API such as Realm. The

upside would be much lower runtime overhead, enabling Regent to perform efficiently

with much more fine-grained tasks.

A compelling property of Regent, and other task-based models, is how they

focus on application structure (trees of tasks and regions, and their dependencies or

relationships) rather than execution on a particular machine. This structure makes it

easier to target complex hardware. Ultimately, by making the hardware easier to use,

task-based models such as Regent enable hardware architects to be more aggressive in

their designs. In an era where Moore’s Law may soon end, this may be turn out to be
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critical to continued improvements in performance.
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