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Abstract
Implicitly parallel programming systems must solve the joint
problems of dependence analysis and coherence to ensure
apparently-sequential semantics for applications run on dis-
tributed memory machines. Solving these problems in the
presence of data-dependent control flow and arbitrary alias-
ing is a challenge that most existing systems eschew by
compromising the expressivity of their programming models
and/or the performance of their implementations.We demon-
strate a general class of solutions to these problems via a
reduction to the visibility problem from computer graphics.

Keywords: Visibility, Legion, Dynamic Analysis, Coherence

1 Introduction
Implicitly parallel and distributed programming systems are
popular with users who require a supercomputer or the
cloud for large-scale computing, but are unfamiliar with
or unwilling to develop explicitly parallel and distributed
applications [2, 3, 8, 14, 16, 19, 29]. These systems provide
high-productivity programming models based on automatic
discovery of parallelism from computations over implicitly-
distributed collection data types, such as arrays and dataframes.

Any implementation of an implicitly parallel and distributed
programming model has two primary responsibilities. First,
it must discover parallelism by performing a dependence
analysis on sequences of distinguished computations, often
called operators or tasks, that access subsets of the collections,
which we call regions. Tasks that access disjoint regions, or
access regions in ways that cannot interfere with other tasks
(e.g., only reading data) can be executed in parallel. Second,
the system must ensure coherence of regions so that tasks
observe the most recent updates to data, consistent with a se-
quential shared-memory semantics of the original program.

In this paper we present and evaluate algorithms for man-
aging coherence and detecting data dependences in the gen-
eral case when regions can name arbitrary subsets of collec-
tions (and so regions can overlap, or alias), when regions are
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1 struct Node {
2 up : float
3 down : float
4 }
5
6 task t1(p<Node >, g<Node >):
7 read -write p.up, reduce ::+ g.down;
8 task t2(p<Node >, g<Node >):
9 read -write p.down , reduce ::+ g.up;
10
11 task main(N<Node >):
12 read -write N.up, N.down;
13 P[1..3] = ... # create primary partition of N
14 G[1..3] = ... # create ghost partition of N
15 while (*)
16 for i = 1..3 t1(P[i],G[i])
17 for i = 1..3 t2(P[i],G[i])

Figure 1.A stylized graph computation with tasks using two
different partitions of the collection of nodes in the graph.

dynamically computed rather than statically specified, and
when the sequence of tasks is determined by data-dependent
control flow. Due to these requirements, we perform our
implementation and evaluation using the Legion runtime [5]
because it supports all three features, which are essential for
many applications with data-dependent behavior.
The data-dependent nature of these problems mandates

that solutions are dynamic dependence and coherence analy-
ses. Most existing systems with such analyses impose restric-
tions to simplify their implementations, such as requiring
that all regions be pairwise independent. We refer to systems
with this model as using name-based coherence, because ev-
ery data element must always have a unique name (i.e., can
be in only one region); in contrast, in a content-based coher-
ence system, data elements may be part of multiple regions
simultaneously. Content-based coherence is more general
than name-based coherence: content-based coherence can
trivially support name-based coherence using a single re-
gion for each name. We further contrast content-based and
named-based systems in Section 9.
Our main technical contribution is the insight that the

problems of dependence analysis and content-based coher-
ence in implicitly-parallel task-based distributed systems are
closely related to the visibility problem in computer graph-
ics (Section 3). After providing some background and an
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(a) Primary partition (b) Ghost partition (c) Region tree

Figure 2. Primary and ghost partitions of a graph’s nodes and the associated region tree.

example program that we use for the duration of the paper
(Section 2), we demonstrate how to reduce these problems
to the visibility problem. We then adapt three well-known
visibility algorithms of increasing sophistication to address
content-based coherence: the painter’s algorithm,Warnock’s
algorithm, and ray casting (Sections 4–7). We evaluate im-
plementations of all three algorithms on several different
applications across machine scales (Section 8). The results
show that ray casting has the best overall performance by a
significant margin, and as a result the ray casting algorithm
is the one currently in use by the Legion project. Finally, we
discuss related work (Section 9) and conclude (Section 10).

2 Example and Background
In this section we give more background on the Legion pro-
gramming model [5] and introduce a program that we will
use as a running example throughout the paper. The pro-
gram in Figure 1, which outlines a typical simulation on an
undirected graph, illustrates the value of supporting content-
based coherence. Each task accesses two different subregions
of data: a set of nodes that form a piece of the graph and
a set of ghost nodes adjacent to that piece. Subregions are
simply subsets (not copies) of the elements of a region. In-
stead of computing these subsets at each task launch, Legion
allows programs to name the subregions by creating parti-
tions of regions [23, 25], in this case P (for primary) and G
(for ghost) of the node region N of the graph. Partitions are
arrays of subregions. An example primary partition P of a
graph’s nodes into three disjoint subregions is shown in Fig-
ure 2(a), where all the nodes of one color belong to the same
subregion. The primary partition can be mapped across the
machine (e.g., each subregion assigned to a different GPU) to
enable parallel computation by tasks on the subregions. The
ghost nodes for each subregion 𝑟 of the primary partition
are the nodes outside of 𝑟 that are connected to 𝑟 by at least
one edge; these represent places where information must
be exchanged between the pieces of the graph during the
simulation. Figure 2(b) shows the ghost partition correspond-
ing to the primary partition in Figure 2(a). For example, all
nodes colored blue in 2(b) form the ghost subregion for the

blue subregion of 2(a). We omit the partitioning of edges; the
node computations are sufficient for illustration.

Note that the ghost partition of nodes is not a mathemati-
cal partition: it is not complete (some nodes are not included
in any subregion) and some nodes have multiple colors be-
cause they are included in more than one subregion. Thus
the ghost subregions are also not disjoint and the partition
G is said to be aliased. Figure 2(c) shows an arrangement of
regions and partitions for this program into a hierarchical
structure called a region tree that captures their relationships:
the set of all nodes (the root region N) has two partitions
(represented by the triangles labeled P and G) each with three
subregions representing subsets of data in N.
After constructing the primary and ghost partitions of

the nodes, the program in Figure 1 enters a loop where it
repeatedly alternates between two phases t1 and t2. The
signatures of these tasks are given, including their effects
on the region’s fields (members of the struct Node): t1 reads
and writes the up field of each node in its primary subregion
and performs reductions (summations) to the down field of
each node in its ghost subregion. Task t2 reverses the roles
of the up and down fields.
It is easy to check that all three task calls on line 16 can

execute in parallel. First, in each call to t1, the accesses
through the primary partition and the ghost partition are
touching different data because they refer to different fields
up and down. The t1 tasks read and write their primary
subregion, which can proceed in parallel because the primary
subregions are disjoint. The ghost region accesses in different
invocations of t1may touch the same node’s down field (since
some nodes are included in more than one ghost subregion),
but the accesses are reductions and so can be performed
separately and the three sets of results combined later (e.g.,
when the field is read by another task). The justification that
the t2 tasks (line 17) can run in parallel is symmetric.

Now consider what happens between lines 16 and 17. Task
t2 on line 17 is reading values of the down field in the pri-
mary partition that were written by reductions to the ghost
partition on line 16. Similarly, the reductions through the
ghost partition on line 17 must be applied to the most recent



Visibility Algorithms for Dynamic Dependence Analysis and Distributed Coherence PPoPP ’23, February 25-March 1, Montreal, QC, Canada

Figure 3. Rendering a 3D scene as a 2D image.

values of the up field written through the primary partition
on line 16. Similar implicit communication occurs going from
line 17 to line 16 of the next loop iteration. Complex commu-
nication patterns can arise when a task writes data using one
partition and another task reads that data through a different
partition; it is one of the strengths of the implicitly paral-
lel model that the programmer only needs to identify the
desired partitions of the data and not to explicitly manage
the communication. It is the system’s responsibility to guar-
antee coherence: that each read by a task 𝑡 sees the correct,
current version of the data produced by tasks preceding 𝑡

in sequential program order regardless of where tasks are
scheduled. Correctly relaxing this sequential order into a
parallel schedule requires analyzing dependences between
tasks. A dependence exists between two tasks that access the
same data unless both tasks read that data or both perform
reductions with the same associative operator.

Asmentioned earlier, while Legion supports content-based
coherence, most systems cannot support the program in Fig-
ure 1 as written because they are name-based, reasoning only
about the names of regions and not their contents. Conse-
quently all subregions must be pairwise disjoint to avoid
aliasing (no data element may have more than one name),
and therefore only a single disjoint partition of a region is
supported [2, 8, 14, 16, 19, 29]. In our experience, name-based
coherence will force at least one of two compromises when
writing a program with multiple natural views (partitions)
of the data. The program in Figure 1 could be written using
only the primary partition. In this approach, communicating
the ghost nodes requires communicating an entire piece of
the graph, as the only units that can be communicated are
named subregions; thus, one compromise is to name regions
at the coarsest granularity required and accept that some
tasks will communicate more data than necessary. A more
efficient strategy creates a separate set of regions that hold
only the ghost nodes; explicit copies manage the coherence
of the ghost node regions with the primary partition, which
forgoes the advantages of implicit communication.

3 The Visibility Problem
Visibility in computer graphics is the problem of determining
which primitive objects (usually triangles) in a scene are
visible to the camera and therefore should contribute to the
rendered values of pixels [10, 13, 20]. Complications arise

because one object may be in front of, or occlude, another
from the perspective of the camera and some objects may be
partially or wholly transparent. Figure 3 depicts the common
case in graphics of rendering a 2D image from a 3D scene.

Rendering algorithms solve the visibility problem to com-
pute a value for each pixel in an output image as a function
of the primitives in the scene and the position of the camera.
Only the nearest objects to the camera ultimately contribute
to the value of a pixel, unless some objects are at least par-
tially transparent as seen in the blue and red triangles in
Figure 3. The degree of transparency for an object is its alpha
value, with 0 fully transparent, 1 fully occluding, and values
in between representing fractional transparency. The pro-
cess of accumulating the effects of multiple semi-transparent
primitives to a pixel is referred to as alpha blending.
The basic visibility problem is computing what is visible

along a line. Assuming primitive objects are triangles, and
ignoring degenerate cases, each triangle in the scene inter-
sects with the line at either zero or one points. The triangles
that share a point with the line can then be ordered by where
those points appear along the line, as depicted in Figure 3.
Here four triangles in the scene intersect with a line from the
camera at points 𝑟1 to 𝑟4, with 𝑟1 closest to the camera. The
value of the pixel defined by the view along the line from the
camera is 𝑣 = 𝑏 (𝑟1, 𝛼1, 𝑏 (𝑟2, 𝛼2, 𝑏 (𝑟3, 𝛼3, 𝑏 (𝑟4, 𝛼4, 0)))), where
𝑏 is the blending function, 𝛼𝑖 is the alpha value of the 𝑖-th
triangle, and 0 is the identity for 𝑏 (i.e., 𝑏 (𝑥, 𝛼, 0) = 𝛼𝑥).
Since the point 𝑟3 on the purple triangle is occluding (𝛼3 =
1), the black triangle is not visible along the line; i.e., 𝑣 =

𝑏 (𝑟1, 𝛼1, 𝑏 (𝑟2, 𝛼2, 𝑏 (𝑟3, 1, 0))).

3.1 Coherence
We reduce the coherence problem (content-based or name-
based) to the visibility problem in computer graphics. Con-
sider a single element 𝑣 of a region, such as a point in an 𝑁 -
dimensional array or dataframe. We assume there is a global
clock that assigns a time 𝑡 to each operation 𝑜 performed
by any task on 𝑣 . Let ⟨𝑜1, 𝑡1⟩, . . . , ⟨𝑜𝑛, 𝑡𝑛⟩ be that sequence
of operations ordered by increasing 𝑡𝑖 . The three possible
operations are a write𝑤𝑥 , which assigns 𝑥 to 𝑣 , a reduction
𝑓 𝑖𝑥 which applies the reduction operator 𝑓 𝑖 to the current
value of 𝑣 and 𝑥 , and a read 𝑟 , which reads the current value
of 𝑣 . We define a blending function 𝐵 on this sequence:

𝐵(⟨𝑜1, 𝑡1⟩, . . . , ⟨𝑜𝑛, 𝑡𝑛⟩, 𝑣) = 𝐵(⟨𝑜2, 𝑡2⟩, . . . ⟨𝑜𝑛, 𝑡𝑛⟩, 𝑏 (𝑜1, 𝑣))
𝑏 (𝑤𝑥 , 𝑣) = 𝑥

𝑏 (𝑓 𝑖𝑥 , 𝑣) = 𝑓 𝑖 (𝑥, 𝑣)
𝑏 (𝑟, 𝑣) = 𝑣

Consider a read ⟨𝑟, 𝑡𝑖⟩. Then 𝐵(⟨𝑜1, 𝑡1⟩, . . . , ⟨𝑜𝑖−1, 𝑡𝑖−1⟩, 0) is
the value of 𝑣 at time 𝑡𝑖 , which is visibility on the line ex-
tending backwards in time along 𝑣 .

Visual transparency has a direct analog in coherence: reads
are fully transparent, reductions are partially transparent
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(a) Task time-line (b) Task updates

Figure 4. Visualization of content-based coherence.

(the “degree” of transparency depends on the reduction oper-
ator), andwrites are fully opaque. The execution of a program
of tasks using these operations on arbitrary subsets of a re-
gion induces a space-time volume upon which coherence
must be analyzed. Our reduction shows the direct correspon-
dence between visibility in graphics and coherence in task-
based systems: one computes visibility in spatial dimensions,
the other computes visibility in the temporal dimension.
Figure 4(a) shows a timeline of six tasks and Figure 4(b)

shows the corresponding portion of an array that each task
touches with updates stacked in order of time, most recent
updates on top. All updates are writes (depicted as solid
boxes) except for tasks T4 and T6, which perform reductions
(partially transparent boxes).

When task T6 executes, T6’s input data is assembled from
the most recent tasks to update it. Figure 4(b) shows that T6
needs some data written by T5, T4, T3 and T2, but not T1,
whose updates are occluded by T2. In Figure 4(a), the dotted
arrows show this “looking back in time” to find the tasks
that wrote each piece of the data needed by T6.

3.2 Dependence Analysis
The reduction presented above uses a global notion of time,
which corresponds to the sequential execution order of tasks.
Dependence analysis is needed to relax this sequential order
to a partial (parallel) order on the execution of tasks such
that the coherence of reads is still guaranteed.
Recall that we distinguish between content-based coher-

ence and name-based coherence. In a name-based scheme,
regions must be disjoint and there can only be a dependence
between two tasks 𝑠 (𝑋 ) and 𝑡 (𝑌 ) if 𝑋 = 𝑌 . In content-based
coherence, regions can overlap and there can be a depen-
dence only if𝑋 ∩𝑌 ≠ ∅. Content-based coherence also easily
supports irregular and sparse regions; the set of elements in
a region need not be contiguous subranges of elements. The
main cost of content-based coherence is discovering which
pairs of regions have non-empty intersections.

Just because two tasks 𝑠 (𝑋 ) and 𝑡 (𝑌 ) share data does not
mean there is a dependence between them; there exists a
dependence only if reversing the execution order of the tasks
could lead to incorrect results. Each task declares whether it

1 t1(P[1],G[1]) # 𝑡0
2 t1(P[2],G[2]) # 𝑡1
3 t1(P[3],G[3]) # 𝑡2
4 t2(P[1],G[1]) # 𝑡3
5 t2(P[2],G[2]) # 𝑡4
6 t2(P[3],G[3]) # 𝑡5
7 t1(P[1],G[1]) # 𝑡6
8 t1(P[2],G[2]) # 𝑡7
9 t1(P[3],G[3]) # 𝑡8

Figure 5. The initial sequence of tasks from main in Figure 1.

1 # S is the state of the runtime system
2 run_task(T(P1 R1, . . . , Pn Rn) ,S)
3 foreach Pi Ri
4 Ri, S := materialize(Pi, Ri, S)
5 R1, . . . , Rn := T(R1, . . . , Rn)
6 foreach Pi Ri
7 S := commit(Pi, Ri, S)
8 return S

Figure 6. Task execution.

reads, reads and writes, or performs reductions with a spe-
cific reduction operator (such as summations) on its region
arguments. The Legion runtime conservatively estimates
whether there is a dependence between two tasks using the
tasks’ privileges [5]; we omit the details.
Figure 5 shows the first nine tasks executed by the main

task in Figure 1. Because our analyses are dynamic, the run-
time system observes a sequence of task launches that it
analyzes for dependences and coherence. Consider task 𝑡6
on line 7 of Figure 5, the first task called the second time
the loop on line 16 of Figure 1 is entered. To calculate what
tasks 𝑡6 depends on and to compute coherent versions of
𝑡6’s arguments, the runtime “looks” backwards in time to
observe the effects of previous tasks on the regions of data
𝑡6 references. In this case 𝑡6 has a dependence on tasks 𝑡3, 𝑡4,
and 𝑡5 because 𝑡6 reads a subregion from the primary par-
tition that may overlap with reductions by these previous
tasks to the ghost partition. In turn 𝑡3 has dependences on
𝑡0, 𝑡1, and 𝑡2 because 𝑡3 adds reductions to values written by
those tasks. Tasks 𝑡4 and 𝑡5 also have dependences on 𝑡0, 𝑡1
and 𝑡2 for the same reason.

From this example we can see that dependence analysis is
a subset of the coherence problem. Dependence analysis only
requires the system to prove which tasks have touched the
data another task may access, but it does not need to know
the actual values of the elements, just that there could be
elements in common. For example, in the task stream in Fig-
ure 5, the system will discover that there are no dependences
between tasks 𝑡0−2, 𝑡3−5, and 𝑡6−8, allowing those groups of
tasks to execute in parallel. With coherence we must go one
step further and compute the current values of the elements
in common. Thus, our algorithms for coherence will also
provide solutions for dependence analysis.

4 Preliminaries
Before presenting our visibility algorithms, we first define

a common framework for their presentation. Figure 6 defines
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a function run_task that takes a task call T(P1 R1, . . . , Pn Rn)
and the current state S of the runtime system. Here Pi is the
privilege that T has on region Ri (see below). Each visibility
algorithm must provide two functions materialize and
commit together with an implementation of S. To explain
materialize and commitwe need additional details of tasks:

• A region R is a set of pairs {⟨𝑖, 𝑣⟩} where 𝑖 is an 𝑛-
dimensional point and 𝑣 is the value of the region at
that point. Note that this definition limits regions to a
single field. Each first component 𝑖 can appear at most
once in the set.

• A program uses a single region A. (Actual systems al-
low any number of regions as well as multiple fields
per region, but this simpler setting is sufficient to il-
lustrate the important ideas.) The domain dom(A) =

{i| ⟨i, v⟩ ∈ A} is the set of A’s first components.
• Reduction operators f must have an identity 0f to
support partial accumulation.1 For example, += is a
reduction operator with the identity 0.

• Each privilege Pi in a task call is one of read, read-write,
or reducef, where f is the reduction operator (e.g., a
summation has the privilege reduce+). Two privileges
interfere if two tasks with those privileges could have a
dependence. The only non-interfering combinations of
privileges are read/read and reducef/reducef, that
is, two reductions with the same operator.

• Any region arguments R and R′ to a task must have
disjoint domains dom(R) ∩ dom(R′) = ∅ unless the task
only reads both regions or only reduces to both regions
with the same reduction operator2.

A region argument Ri to a task only names what data
is needed: dom(Ri) is the set of indices and it is up to the
runtime system to fill in the correct values. The function
materialize takes a region, its privilege, and the current
runtime state and returns a region with the same domain and
current values; materialize may also update the state (line
5 of Figure 6). Running a task calls the function on the region
arguments, which may update those regions (line 6). The
function commit records information needed to materialize
correct region arguments for future task calls (line 8).

5 The Painter’s Algorithm
In the next three sections we present three coherence algo-
rithms based on visibility algorithms from computer graph-
ics. Each algorithm refines the previous one, so the most so-
phisticated and best performing method, ray casting, reuses
concepts developed for the other two.
In computer graphics, the painter’s algorithm solves the

visibility problem by rendering objects in a scene from back

1There are interesting optimizations when reduction operators are commu-
tative and/or associative, but they are beyond the scope of this work.
2Handling the case of dom(R) ∩ dom(R′) ≠ ∅ with interfering privileges
requires intra-task coherence that is beyond the scope of this work.

1 # S is a history: a list of (privilege , region) pairs
2 paint(R,S)
3 # The history is traversed from oldest to newest
4 for ⟨P′, R′⟩ in S
5 if P′ = read -write then
6 R := (R ⊕ R′)/R
7 else if P′ = reducef then
8 R := R ⊕ f(R/R′, R′/R).
9 # do nothing if P′ = read
10 return R, S
11
12 materialize(P,R,S)
13 # R[i] is initially undefined for all i in dom(R)
14 if P = reducef then
15 return { ⟨i, 0f ⟩ | i ∈ dom(R′) }
16 else
17 return paint(R,S)
18
19 commit(P,R,S)
20 return S ++ ⟨P, R⟩

Figure 7. The painter’s algorithm.

to front [17]. For a given pixel𝑝 , rendering a semi-transparent
object (in front of all objects already rendered) accumulates
onto 𝑝 and rendering a fully occluding object overwrites 𝑝 .
The painter’s algorithm for content-based coherence is in
Figure 7. The code uses three auxiliary functions:

𝑋/𝑌 = {⟨𝑖, 𝑣⟩ ∈ 𝑋 | 𝑖 ∈ dom(𝑌 )}
𝑋\𝑌 = {⟨𝑖, 𝑣⟩ ∈ 𝑋 | 𝑖 ∉ dom(𝑌 )}

𝑋 ⊕ 𝑌 = 𝑋\𝑌 ∪ 𝑌

In words, 𝑋/𝑌 is the subset of 𝑋 sharing points with 𝑌 , 𝑋\𝑌
is the subset of 𝑋 not sharing points with 𝑌 , and 𝑋 ⊕ 𝑌 is
the union of 𝑋 and 𝑌 using 𝑌 ’s values for dom(𝑋 ) ∩ dom(𝑌 ).
The state S in Figure 7 is a list of privilege-region pairs

⟨P, R⟩. The initial state is a list with one pair [⟨read-write, A⟩],
which is the initial value of A. When a task finishes, commit
appends the final state of its region arguments to S. Thus,
the state is a history of the results of operations in order of
increasing time—all the result pairs for the 𝑖th task call in
program order are listed before the results of task 𝑖 + 1 and
after the results of task 𝑖 − 1.3
The paint function computes the most recent state of a

region R by traversing the history and applying operations
in order to R. For each privilege-region pair (line 3), if the
privilege is read-write, then the overwritten portion of R
is replaced while the portion that is not updated is retained
(line 5). A reducef is similar, except the updated portion
is folded into R using the reduction operator (line 7). Note
we lift reduction operators 𝑓 pointwise to pairs of regions:
𝑓 (𝑋,𝑌 ) = {⟨𝑖, 𝑣⟩|⟨𝑖, 𝑣𝑥 ⟩ ∈ 𝑋 ∧ ⟨𝑖, 𝑣𝑦⟩ ∈ 𝑌 ∧ 𝑓 (𝑣𝑥 , 𝑣𝑦) = 𝑣}.
No modifications to R are needed for a read operation.

The materialize function behaves differently depending
on the privilege of the operation to be performed on R. For a
reduction the history is not examined at all and the region
is initialized to the identity of the reduction operator—the
reductions are accumulated locally and only applied in future

3Because of the restrictions on region argument aliasing it does not matter
what the order is for the region arguments to a single task call.
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(a) Tasks t0−2 (b) Tasks t3−5 (c) Tasks t6−8
Figure 8. The region tree state after processing the task launches in Figure 5.

calls to materialize. This lazy application of reductions is
important, because it minimizes data movement: eagerly
performing reductions requires materializing the current
value of the region, which copies data to the location of the
task before it begins execution, while accumulating partial
reductions only moves data when the result is needed [24].
In contrast, for a read or read-write operation the system
must materialize the current values of the region.

5.1 Optimizations and Implementation
The algorithm in Figure 7 is simple but inefficient. When
materializing a subregion R, the naive painter’s algorithm
requires testing every operation in the history for overlap
with R. A more efficient approach is to use the region tree
as an acceleration data structure: We store histories in the
region tree such that the history relevant to a region R can
be found along the path from the region tree’s root to R.
More specifically, each node R of the region tree maintains
a subhistory R.h, and we guarantee that to materialize R,
materializing the path history which is the concatenation of
all the histories on the path from the root to R, in that order,
yields the same result as the naive painter’s algorithm. When
a task t with region argument R and privilege p is launched:

1. ⟨t, p⟩ is appended to R.h.
2. Let R′ be an ancestor of Rwith child C. If C∩R ≠ ∅, then

any tasks already recorded in C′s subtree must precede
⟨t, p⟩ in the path history. We append a snapshot of C’s
subtree of task histories, called a composite view, to
R′.h. We delete the task histories in C since they are
now recorded at C’s parent R′.

When traversing a path history, composite views are tra-
versed (including any nested composite views) before con-
tinuing with the next element of the path.

We can reduce the number of composite views by record-
ing at every node R whether it is open (there are non-empty
histories in R’s subtree) or closed (all histories in R’s subtree
are empty). An additional improvement is to record the priv-
ileges used in R’s subtree at R. When performing step (2)
above, we can then skip creating composite views for sub-
trees that are closed or only have histories with privileges
that do not interfere with ⟨t, p⟩. Finally, often a composite
view occludes an earlier composite view 𝑣 ′, allowing 𝑣 ′ to

be deleted from the history; we omit the details of a conser-
vative test to identify such occlusions for lack of space.

Figure 8 gives an example using the sequence of tasks in
Figure 5. The indices in the figure indicate the step at which
the task or composite view is added to the region tree. When
t0 is launched there are no previous tasks so the task is
recorded in the history at P.up[1]. When t1 is launched, we
record t1 at P.up[2]. No composite view is created because P
is a disjoint partition, so P.up[1] ∩ P.up[2] = ∅. The launch
of t2 is similar; Figure 8(a) shows the region tree state after
t0−2 have been recorded. Task t3 uses the G.up[1] subregion
and so takes a different path through the region tree with
different reduction privileges. Because P.up and G.up over-
lap and the read-write privileges used in P.up interfere
with the reduction privilege used by t, a composite view
V0 of the subtree at P.up is appended to the root’s history.
Even though G.up is an aliased partition, t4 and t5 use the
same reduction privilege as t3 and so these tasks are simply
added to the histories of G.up[2] and G.up[3], respectively.
The region tree state after the launch of t0−5 is shown in
Figure 8(b). When t6 is launched, another composite view V1
of G.up is appended at the root. Figure 8(c) shows the state
of the region tree after tasks t0−8 have been analyzed.

Both region trees and composite views are distributed data
structures with partial components living on different nodes
for scalability reasons. The number of subregions in region
trees and composite views is often directly proportional to
the number of nodes in the machine and therefore storing
any such data structure on a single node is likely to be pro-
hibitively expensive. We construct composite views bottom
up, with minimal communication between nodes to capture
the state of the uppermost levels. Since composite views are
immutable after construction, we can safely replicate nodes
of composite views across the machine on demand.

6 Warnock’s Algorithm
A disadvantage of the painter’s algorithm is that even with
optimizations, materializing a region R may result in test-
ing R against many history entries (especially composite
views) that are no longer visible due to subsequent updates.
Warnock’s algorithm, given in Figure 9, avoids considering
updates irrelevant to materializing a region. It does this by
performing a spatial decomposition to address the visibility
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1 # S is a set of equivalence sets.
2 # An equivalence set is a (region ,history) pair.
3 refine(R,S)
4 S′ := ∅
5 for ⟨R′, H⟩ in S
6 if dom(R′) ∩ dom(R) = ∅ then
7 S′ := S′ ∪ {⟨R′, H⟩ }
8 else if dom(R) = dom(R′) then
9 S′ := S′ ∪ {⟨R′, H⟩ }
10 else
11 S′ := S′ ∪ {⟨R′/R, H⟩, ⟨R′\R, H⟩ }
12 return S′

13
14 materialize(P, R, S)
15 S′ := refine(R, S)
16 Es := { ⟨X, H⟩ ∈ S′ | dom(X) ⊆ dom(R) }
17 R := ∅
18 for ⟨R′, H⟩ in Es
19 if P = reducef then
20 X := { ⟨i, 0f ⟩ | i ∈ dom(R′) }
21 else
22 X := paint(R′, H)
23 R := R ∪ X
24 return R, S′

25
26 commit(P,R,S)
27 S′ := ∅
28 for ⟨R′, H⟩ in S
29 if R′/R = R′ then
30 if P = read -write then
31 S′ := S′ ∪ ⟨R′, ⟨P, R/R′⟩⟩
32 else
33 S′ := S′ ∪ ⟨R′, H ++ ⟨P, R/R′⟩⟩
34 else # refine guarantees dom(R) ∩ dom(R′) = ∅
35 S′ := S′ ∪ ⟨R′, H⟩
36 return S′

Figure 9. Warnock’s algorithm.

problem [27]. The algorithm divides the scene into parts
and then determines the number of primitives visible in
each sub-scene. The divide-and-conquer approach continues
recursively until the number of primitives visible in each
sub-scene is trivial (one or a small number) or the sub-scene
has been refined down to a single pixel. Once the scene has
been segmented into simple sub-scenes, each sub-scene is
easily rendered independently.

The state S is now a set of equivalence sets consisting of a
pair of a region R and a history Hwith the property that every
operation in H is relevant to every element of R: if ⟨P′, R′⟩ ∈ H,
then dom(R) ⊆ dom(R′). Initially there is one equivalence set,
the global collection A with the history [⟨read-write, A⟩].
Any two equivalence sets are always disjoint, and the union
of all equivalence sets always covers A.

When a task is launched, the function refine splits equiv-
alence sets as necessary to maintain the relevant invariant
that each equivalence set represents a set of points with
the same history. If a task works on a region R that has a
non-trivial overlap with an existing equivalence set R′, then
R′ is split into two equivalence sets consisting of R′/R and
R′\R (line 11). We then apply the painter’s algorithm to each
equivalence set (lines 18-24) to build up the materialization
of R. The spatial separation of the histories is seen in the
commit function, which appends a task’s operation on region
R only to the equivalence sets that make up R. In the case
that the task is writing, it can clear the prior history of the

Figure 10. The equivalence sets created by Warnock’s algo-
rithm for the task launches in Figure 5

equivalence set and then store itself as the only entry in a
new history, thereby ensuring that histories are precise and
only contain the most recently “visible” tasks (lines 30-31).
Figure 10 gives an example of the equivalence set tree

created by Warnock’s algorithm for the sequence of task
launches shown in Figure 5. We show just the sequence of
equivalence set refinements for the up field. Each equivalence
set 𝑞 is labeled with the subset of N.up that 𝑞 represents as
well as the task 𝑡 that caused 𝑞 to be added to the refinement
tree. A solid outline of a node indicates that a task’s region ar-
gument is from the P partition, while a dashed line indicates
a region argument from the G partition (recall Figure 2).

Initially N.up is the only equivalence set. Task t0 has priv-
ileges on P[1].up which causes the root to be refined into
N.up/P[1] .up = P[1] .up and N.up\P[1] .up. Task t1 has privi-
leges on P[2].up, which is disjoint from P[1].up, so only
node N.up \ P[1] .up is refined into N.up \ P[1] .up / P[2] .up =

P[2] .up and N.up \ P[1] .up \ P[2] .up = P[3] .up. After
tasks t1 and t2, Warnock’s algorithm has discovered the
subregions of the P partition, so task t2, with privileges on
P[3].up, does not add additional equivalence set nodes.
The tasks t3−5 work on the ghost partition subregions

G[1 − 3]. Task t3 takes G[1] .up as an argument. Recall that
G[1] .up is the set of ghost nodes for P[1] .up, which means
that G[1] .upmay share nodeswith P[2] .up and P[3] .up (again,
see Figure 2). Thus t3 causes P[2] .up and P[3] .up to be split
into those elements that are and are not ghost cells in G[1] .up.
Task t4 takes G[2] .up as an argument, which causes the
then-leaf nodes in the subtrees under P[1] .up and P[3] .up
to be further refined. Finally task t5 takes G[3] .up as an ar-
gument, which causes the final refinements in the subtrees
under P[1] .up and P[2] .up. Note that not all equivalence sets
computed in the subtree under P[1] .up are shown because
P[1] .up/G[2]/G[3] and P[1] .up/G[2] \ G[3] are empty. Task
t5 is the last task of the first iteration of the loop in Fig-
ure 1. Each subsequent iteration uses the same regions, so
no further refinements are needed to the tree in Figure 10.
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6.1 Optimizations and Implementation
As in the previous section, we can greatly improve the per-
formance of Warnock’s algorithm with some optimizations.
The most important challenge is speeding up determining
which equivalence sets represent a given region (line 16 of
Figure 9). Since each equivalence set is always refined into
new equivalence sets that cover the original equivalence
set, the history of refinements defines a search tree that is a
bounding volume hierarchy (BVH) [9]. For any new subre-
gion R to discover its constituent equivalence sets, it starts
at the root node of the equivalence set BVH, tests for inter-
sections with any child nodes, and recursively traverses any
overlapping children. The set of leaf nodes reached are ex-
actly the most recent equivalence sets needed for performing
the dependence and coherence analyses for R at that point in
the execution of the program. After performing this initial
traversal, we can memoize the equivalence sets that compose
R. Since Warnock’s algorithm only refines equivalence sets,
the next task that uses R later in the program can begin the
search for R’s current constituent equivalence sets at each
of the memoized equivalence sets.
The equivalence set BVH is a distributed data structure.

The only mutable state in the BVH is the histories stored at
the leaves, so we can safely replicate intermediate nodes in
the BVH throughout the machine since the names of any
child nodes are immutable after an equivalence set is refined.
Replication is crucial to avoiding sequential bottlenecks at
scale when many nodes are attempting to execute tasks that
all need to traverse the upper levels of the BVH to identify
constituent equivalence sets for their subregions.

7 Ray Casting
Historically, the painter’s algorithm was the first coherence
algorithm we implemented, but it had scalability issues due
to the inability to precisely prune occluded elements of his-
tories, and so subsequently our adaptation of Warnock’s
algorithm was developed. Warnock’s algorithm can also lead
to different scalability issues when too many equivalence
sets are created (see Section 8). Our realization that these al-
gorithms are related to visibility in computer graphics, which
was not apparent earlier, motivated investigating whether
ray casting, the preferred approach in modern rendering
[28], could work better than the other approaches.
In ray casting, a ray is cast from each pixel of the image

into the scene, recording the objects that it passes through
(if semi-transparent) and the object that eventually blocks it.
The effects of those intersections are then accumulated to
compute the final value of the pixel4 (recall Figure 3).
The difference between content-based coherence using

ray casting and Warnock’s algorithm involves the handling

4In graphics, when shading surfaces recursive "shadow" rays are also cast
to sample the illumination at a surface point. There is no analog of shadow
rays in our case; we only need to determine the visible tasks.

1 dominating_write(R,S)
2 S′ := { ⟨R, [ ⟨read -write, 𝑅⟩] ⟩ } ∪ { ⟨R′, H⟩ ∈ S | dom(R) ∩ dom(R′) = ∅}
3 return S′

4
5 materialize(P,R,S)
6 R′, S′ := warnock::materialize(P, R, S)
7 if P = read -write then
8 S′ := dominating_write(R′, S′)
9 return R′, S′

10
11 commit(P,R,S)
12 return warnock::commit(P, R, S)

Figure 11. Ray casting algorithm.

of writes. With Warnock’s algorithm, equivalence sets are
only refined into smaller equivalence sets. While this makes
it easy to discover which equivalence sets represent a subre-
gion, it often leads to many equivalence sets with identical
histories after a write is performed. In the ray casting ap-
proach, every task t performing a write for a region R creates
a new equivalence set representing the points in Rwith a his-
tory initially containing just ⟨read-write, R⟩. After creating
a new equivalence set R for a write, we prune all equivalence
sets that are occluded by R. Figure 11 uses the materialize
and commit routines from Warnock’s algorithm. The new
function dominating-write creates a new equivalence set
for R and prunes the equivalence sets occluded by R (line 2).
The new handling of writes means that equivalence sets

may be combined as well as refined. Ray casting serves as
the primary mechanism for addressing two problems caused
by these now non-monotonic changes in the collection of
equivalence sets compared toWarnock’s algorithm. To prune
equivalence sets in the dominating-write function, we use
ray casting to discover the equivalence sets that have been
occluded by the region R (line 2 of Figure 11). Additionally,
we use ray casting to discover the constituent equivalence
sets of region R in each invocation of the materialize func-
tion (line 16 of Figure 9 via line 6 of Figure 11) because the
collection of equivalence sets could change after the invoca-
tion of the materialize function for each task.

Ray casting produces the same equivalence sets shown in
Figure 10 for the tasks t1 −t5 of Figure 5, but note that these
equivalence sets are stored at the leaves of the P partition,
which is the only disjoint and complete partition in the exam-
ple in Figure 1. The first task of each loop has read-write
privileges on P[1] .up. The write privilege causes any refine-
ments and their histories of P[1] to be discarded, reducing
the number of equivalence sets and simplifying the history
until the tasks that operate on ghost regions are called again.
The tasks with read-write privileges on P[2] .up and P[3] .up
similarly coalesce equivalence sets and simplify the history.

7.1 Optimizations and Implementation
To accelerate ray casting, practical implementations in com-
puter graphics rely on a BVH decomposition of the scene
to efficiently detect the objects a ray intersects [9]. Because
equivalence sets are coalesced by writes, there is no longer
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a stable BVH based on equivalence sets. Instead we use a
heuristic based on which partitions tasks are using to select
a subtree of the root region with only disjoint and complete
partitions, which naturally defines a BVH. If the application
switches to using a different subtree with disjoint-complete
partitions, the runtime shifts the equivalence sets to the new
subtree. In rare cases when no subtree with disjoint-complete
partitions exists, the runtime creates a K-d tree [6]. While
the construction of the BVH data structure based on a region
subtree is different, the remainder of the implementation of
ray casting is quite similar to Warnock’s algorithm.

8 Performance Evaluation
Over a decade we have implemented and tuned all three
algorithms in the Legion runtime. Each implementation was
tested on many of the top supercomputers in the world at
the time of development. To conduct experiments comparing
the performance across approaches, we backported a recent
version of Regent [21], a programming language that targets
Legion, to all three versions of the Legion runtime. Similarly,
we ran all experiments with a backported, recent version of
Realm [24], the low-level portability layer that sits beneath
Legion, in order to ensure as uniform behavior as possible.
No other current task-based runtime system fully sup-

ports content-based coherence, so it is not possible for us to
compare with other runtime systems (see Section 9). On the
other hand, having all three approaches implemented and
tuned on a common platform also eliminates potentially sig-
nificant but orthogonal differences in performance, making
our evaluation of the algorithms directly comparable.
We consider three benchmark codes. The first is a 2-D

stencil computation that computes a 9-point5 stencil on a
structured, regular grid of cells intermixed with data-parallel
computations [26]. The second benchmark is a graph-based
circuit simulation that iteratively models the behavior of
circuit elements as edges between nodes with different volt-
ages [22]. The structure of the graph is irregular and induces
different communication patterns between each subset of the
graph. The graph computation also makes use of reductions
to describe parallel updates to voltages from different circuit
elements contributing to the same voltage node. The skeleton
program in Figure 1 is derived from this benchmark. The fi-
nal benchmark is the Pennant mini-application [12]. Pennant
is a 2-D Lagrangian hydrodynamics code for unstructured
meshes. Pennant also performs reductions to handle updates
in parallel, and has several distinct reduction operators that
are used in different parts of the code. Each benchmark has
been tuned and tested for scalability in prior work.
The experiments were run on the Piz Daint supercom-

puter [1] with one Legion process per node. All tasks are
mapped to the single GPU on each node. We did not use
Legion’s tracing [15], which memoizes the dependence and

5Two cells in each direction from the center, excluding “corner” cells.

coherence analyses. Therefore, these experiments do not
measure Legion’s peak performance, but rather measure
the performance of the different coherence algorithms. For
the ray casting and Warnock’s algorithm implementations,
we also perform experiments using Legion’s novel dynamic
control replication (DCR) [4]. (Unfortunately the painter’s
algorithm implementation predates a stable implementation
of DCR.) The purpose of DCR is to shard the work of a sin-
gle task across multiple nodes, which is important for tasks
that launch a large number of subtasks. Consider the while
loop in Figure 1, which repeatedly launches a number of
subtasks proportional to the size of the machine. Since tasks
are internally sequential (parallelism is between tasks, not
within tasks), such a task becomes a sequential bottleneck
at scale; applying DCR to the task essentially transforms it
into an SPMD-style execution, with each shard of the task
handling a subset of the task launches. DCR stresses our
implementations by distributing the source of coherence and
dependence analyses across the nodes.

For each benchmark, wemeasured the performance of two
phases of execution. The first phase is the initialization time,
which is all the time from application start to the end of the
first iteration of the application’s top-level loop. The perfor-
mance of the initialization phase measures Legion’s ability
to discover and analyze the coherence requirements of the
application, either in the form of making initial composite
views for the painter’s algorithm or constructing BVH and
equivalence set data structures for Warnock’s algorithm and
ray casting. The more complex the partitions and communi-
cation patterns, the more initialization time may be required.
The second phase is the steady-state performance of the
remainder of the computation; since all of the benchmarks
execute a repetitive loop with no changes to the structure
of partitions or task dependences, once the initial analysis
is done the performance stabilizes. This phase measures the
weak-scaling capabilities of our implementations.

8.1 Initialization Performance
Figures 12, 13, and 14 show the wall clock initialization
time for the Stencil, Circuit, and Pennant benchmarks, re-
spectively. The most striking feature of these plots is the
universally poor performance of equivalence sets based on
Warnock’s algorithm from Section 6, which is unable to scale
beyond 128 to 256 nodes. Because Warnock’s algorithm al-
ways refines overlapping equivalence sets, in the worst case
it can generate a number of equivalence sets equal to the
powerset of the number of regions used by a program. None
of our benchmarks exhibits such exponential behavior, but
the superlinear nature of the approach still explodes the
number of equivalence sets that must be constructed, ul-
timately dooming scalability. Running with DCR slightly
mitigates this behavior by better distributing the work of
refining equivalence sets across all the nodes in the machine,
but the equivalence set explosion still dominates in the limit.
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Figure 12. Stencil initialization time.
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Figure 13. Circuit initialization time.
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Figure 14. Pennant initialization time.

The performance of composite views based on the painter’s
algorithm from Section 5 scales roughly linearly with the
number of nodes (note these are log-linear plots), which re-
sults in the initialization phase not scaling past 128 nodes.
This outcome is the result of two interacting factors. First,
while composite views are distributed data structures, they
still have one root. Without DCR, the construction and tra-
versals of the root is done on a single machine. At small
node counts the effect is negligible, but at scale having one
machine handling communication from every other node
is a sequential bottleneck, which causes the analysis time

to grow linearly with the size of the machine. This effect is
observed in the initialization phase for all three benchmarks.

The ray casting approach from Section 7 easily performs
the best. Ray casting is already very well distributed even
without DCR, even demonstrating lower constant-time over-
heads compared to DCR in the case of Stencil and Circuit
benchmarks. There is still linear growth in the initialization
phase of the computation for ray casting with or without
DCR, but rate of growth is much smaller than Warnock’s
algorithm (with or without DCR) and significantly smaller
than the painter’s algorithm (without DCR).

8.2 Weak Scaling Performance
Figures 15, 16, and 17 show weak scaling performance of the
Stencil, Circuit, and Pennant benchmarks. To measure weak
scaling performance, we increase the size of the problem be-
ing solved proportionately to the number of machine nodes
used. The worst-performing approach was the painter’s al-
gorithm. In all cases, the painter’s algorithm starts to tail off
between 16 and 32 nodes because the number of children to
examine for interference in each composite view grows with
the size of the machine, which quickly comes to dominate
the overall performance of the iterative phases of execution.
While all three algorithms see large drops in performance
at some point without DCR, the painter’s algorithm experi-
ences the loss of performance on smaller machines.
Warnock’s algorithm performs better, scaling out to 32

to 128 nodes before noticeable performance degradation be-
gins to occur without DCR, and scales out to at least 256
nodes for all three benchmarks with DCR. Since all three
benchmarks do not change their partitioning schemes after
the initialization phase, no equivalence sets undergo refine-
ment during the iterative phase of execution. The scaling
for Warnock’s algorithm is then purely determined by the
cost of performing the analyses on the existing equivalence
sets. Without DCR, all analyses originate on a single node
and must be communicated to equivalence sets on remote
nodes, ultimately leading to a sequential bottleneck and de-
creased scaling. With DCR, Warnock’s algorithm achieves
good weak scaling since the coherence and dependence anal-
yses are distributed across all the nodes and can traverse the
already-computed equivalence sets in parallel.

Ray casting again performs the best of the three approaches.
In all cases, its performance is slightly better thanWarnock’s
algorithm, as its maintains fewer total equivalence sets in its
lists by coalescing writes. Without DCR, ray casting suffers
from the same sequential bottleneck that Warnock’s algo-
rithm does: all analyses originate on a single node and must
be communicated to other nodes. With DCR, the analyses
again are distributed across all the nodes equally, enabling
parallel traversals of the list of equivalence sets and the
equivalence sets themselves, yielding better scalability.

The results of these experiments showwhy ray casting has
been adopted as the current approach in the Legion runtime:
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Figure 15. Stencil weak scaling.
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Figure 16. Circuit weak scaling.
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Figure 17. Pennant weak scaling.

it delivers the best performance for both initialization and
steady-state execution.

9 Related Work
The closest related work on content-based coherence is in
static-analysis based programming models. Sequoia [11], De-
terministic Parallel Java [7], and Halide [18] are examples of
compilers that analyze dependences by reasoning about non-
trivial relationships between sets of data. These program-
ming models are restricted to ensure the analyses can be
done precisely at compile time, and they do not handle data-
dependent control flow, dynamic creation and destruction
of data, unbounded-size outputs, or dynamic load balancing.

StarPU is a task-based runtime system that supports dy-
namic discovery of parallelism [2]. Coherence in StarPU is
name-based. Only one partition of the data can exist at a
time; to use a different partition the first partition must be
deleted (which causes all data in the partition’s subregions
to be copied back to the root region of the partition) and a
new partition created. PaRSEC is a task-based system that
supports a DSL for statically-analyzable parallelism [8] as
well as a runtime interface for dynamically discovered par-
allelism [14]. Data in PaRSEC is stored in distributed data
collections where each element is owned by a single rank,
which is equivalent to a single, disjoint partitioning of the
data. PaRSEC provides data views which may alias but can-
not be used to write the contents of the underlying data
collections. This permits the implementation of certain com-
munication patterns such as halos for stencils, but forces
an owner-computes style of computation that makes more
dynamic or irregular algorithms challenging to implement.
Dask [19] and Ray [16] are distributed task-based run-

times embedded in Python with similar programming mod-
els. Both systems allow users to create futures containing
arbitrary data. Futures are immutable, so no coherence al-
gorithm is required. Distributed collections such as arrays
and dataframes are partitioned into sets of futures; updates
mandate the creation a new futures for mutated data.
Spark’s resilient distributed data (RDD) types are implic-

itly distributed immutable collections of data [29]. When
necessary, Spark implicitly shuffles elements between nodes
to perform computations such as joins and group-bys. A
shuffle is an expensive operation that blocks other uses of
an RDD until it completes, limiting task parallelism. The
immutable nature of RDDs also prevents in-place updates
and necessitates making a new RDD to mutate a collection.

10 Conclusion
We have shown an unexpected reduction of the problems of
dynamic dependence analysis and distributed coherence to
the visibility problem. Using this connection, we’ve demon-
strated that algorithms from computer graphics can serve as
the basis for a general class of solutions to these problems.
Similar to the evolution of computer graphics algorithms for
visibility, ray casting performs the best in our experiments.
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A Artifact Description
This paper includes software artifacts required to run and
reproduce the results presented in Figures 12–17. The ar-
tifact includes three versions of the Legion runtime, three
application codes, and scripts needed to download and build
all dependences.

Obtain the artifact at: https://zenodo.org/record/7332228

A.1 Account Access
This paper requires the use of a supercomputer to replicate
the results. Due to the number of variables involved, the
only reasonable way to replicate these results is to use the
same supercomputer we used in the original experiments.
You will need to obtain access to Piz Daint, a supercomputer
at CSCS. The experiments use GPUs, so you will need access
to the GPU partition. You can find out more about Piz Daint
allocation schemes on their website.

Like all machines, supercomputers have an expected life-
time and will eventually be decommissioned. If you come
to this paper after Piz Daint is no longer available, it may
be substantially more difficult to replicate these results. At
the bottom of this section, we provide some thoughts and
suggestions on how to go about this. However note that we
cannot provide any guarantee that the exact results will be
replicable on any machine other than Piz Daint.

A.2 Setup and Compilation
Wehave provided amaster script to build and run all versions
of the experiments. After unpacking the artifact, run:

./setup_all.sh

Note that this will take some time (estimated 30 minutes
to 1 hour). The script is not interactive, and should complete
successfully if you leave it to run.

A.3 Running Basic Tests
To run a basic set of experiments, do:

./run_first.sh PROJECT_ID

Where PROJECT_ID is the ID of the project assigned to
you by CSCS for use on Piz Daint.
This will run all of our tests on 1 and 2 nodes. Note that

this command queues the jobs in the system, the jobs may
take some time to complete (usually on the order of 1 hour
to 1 day, depending on how many other users are on the
system).

To check the status of your jobs in the queue, run:

squeue -u $USER

When this reports an empty set of pending jobs, all of
your runs are complete. You can of course check on the job
output before this point, but the output may be incomplete.
The command above can also be used to get an estimate of
when your jobs will run.

A.4 Checking the Basic Tests
You can check the results of any runs either before or after
those jobs have completed. However, please note that if you
run this prior to the completion of your jobs, you may see
incomplete output from the following commands.
There are nine directories that contain output from the

runs in this paper. They are:
equiv-ppopp23-neweqcr-regent/language/stencil.run1
equiv-ppopp23-neweqcr-regent/language/circuit.run1
equiv-ppopp23-neweqcr-regent/language/penant.run1
equiv-ppopp23-oldeqcr-regent/language/stencil.run1
equiv-ppopp23-oldeqcr-regent/language/circuit.run1
equiv-ppopp23-oldeqcr-regent/language/penant.run1
equiv-ppopp23-paint-regent/language/stencil.run1
equiv-ppopp23-paint-regent/language/circuit.run1
equiv-ppopp23-paint-regent/language/penant.run1

The directories named neweqcr refer to experiments named
RayCast in the paper. Those named oldeqcr refer to Warnock,
and the ones called paint refer to Paint in the paper. There
are three applications, Stencil, Circuit and Pennant.
To check results, cd to one of the directories above, and

run:
../ppopp23_scripts/parse_results.py

For example, from the following directory:
equiv-ppopp23-neweqcr-regent/language/stencil.run1

The command above should produce something that looks
like the following. (The output has been cleaned up slightly
for presentation.)
system nodes procs_per_node rep init_time elapsed_time
neweqcr_dcr 1 1 0 0.063 1.668
neweqcr_dcr 1 1 1 0.063 1.669
neweqcr_dcr 1 1 2 0.063 1.669
neweqcr_dcr 1 1 3 0.063 1.668
neweqcr_dcr 1 1 4 0.062 1.669
neweqcr_dcr 2 1 0 0.068 1.691
neweqcr_dcr 2 1 1 0.063 1.689
neweqcr_dcr 2 1 2 0.065 1.690
neweqcr_dcr 2 1 3 0.067 1.692
neweqcr_dcr 2 1 4 0.063 1.690
neweqcr_nodcr 1 1 0 0.063 1.668
neweqcr_nodcr 1 1 1 0.062 1.667
neweqcr_nodcr 1 1 2 0.062 1.669
neweqcr_nodcr 1 1 3 0.062 1.668
neweqcr_nodcr 1 1 4 0.063 1.668
neweqcr_nodcr 2 1 0 0.063 1.691
neweqcr_nodcr 2 1 1 0.064 1.689
neweqcr_nodcr 2 1 2 0.065 1.690
neweqcr_nodcr 2 1 3 0.064 1.689
neweqcr_nodcr 2 1 4 0.064 1.691

This output is a TSV-formatted table. In most cases you
can copy-and-paste this directly into a spreadsheet editor
for analysis (as we do below).
The columns of this table are, respectively, the configu-

ration of the runtime (visibility algorithm, and whether or

https://zenodo.org/record/7332228
https://www.cscs.ch/computers/piz-daint/
https://www.cscs.ch/
https://www.cscs.ch/user-lab/allocation-schemes/
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not DCR has been enabled), the number of nodes, number
of processors per node (always 1, because Piz Daint has one
GPU per node), the repetition number (every job is run 5
times), the initialization time in seconds, and the elapsed
time in seconds.
To begin with, you should cd into each of the nine di-

rectories and confirm there is some output. For this basic
configuration we expect to see either 5 or 10 rows, depend-
ing on the algorithm you are running. The paint algorithm
should have 5 rows (because there is no DCR configura-
tion for this algorithm), while the other two should have 10.
When the jobs are complete, you should see all either 5 or 10
rows as specified above, and none of the time entries should
contain ERROR. See below for details on troubleshooting any
problems.

A.5 Troubleshooting
If any part of setup_all.sh fails, the first thing to try is
to rerun setup_all.sh. The script may report that there
is some intermediate build output left from the previous
build. If it does, it is safe to completely remove that di-
rectory (e.g., any of language/gasnet, language/llvm, or
language/terra.build) and try again. The script tracks
what has already been built and only rebuilds the parts that
require rebuilding.

If you see ERROR in the output of parse_results.py, this
may indicate a number of issues at runtime, either a crash
of some sort, OOM, or a timeout. We do not expect this to
happen with any of our applications or configurations, but if
you do, an initial step would be to try rerunning the job (you
can see run_all.sh to see how to launch the appropriate
job). If that still fails, feel free to contact the authors for
assistance.

A.6 Submitting the Full Set of Jobs
Our experiments in the paper go up to 512 nodes. To submit
the remaining jobs, run:
./run_rest.sh PROJECT_ID

Where again, PROJECT_ID is the ID assigned to you by
CSCS.
This will submit jobs for 4, 8, . . . 512 nodes. As above,

running these jobs may take time. In our experience, this
will take at least a couple of hours, and maybe up to 2–3
days for the largest jobs. However, if you submit the jobs
during an especially busy period, queue times can be longer.

A.7 Reproducing Graphs in the Paper
Section 8 contains 6 graphs: two for each application, one
for initialization time and one for weak scaling performance.
As before, the raw data for these graphs can be obtained

by going to each of the directories for the experiments (listed
above) and running:
../ppopp23_scripts/parse_results.py

This produces nine tables of raw results that must be an-
alyzed to produce the final graphs. To make this easier, we
provide our versions of these tables, including our raw re-
sults and calculations to generate the tables. We performed
our analysis in Google Sheets. You can access our spread-
sheet at the link below, and copy it into your own account
for your own use: https://docs.google.com/spreadsheets/d/
173C8yQMZALJqNXw4wJFJFy-RdTqLMNsW4fwPzfSYaMo

Because Google Sheets does not offer the ability to archive
a spreadsheet, we also provide a copy of this document in
Excel format, which is included in the artifact tarball. We
strongly recommend using the Google Sheets version. Google
Sheets is not fully compatible with Excel, and the graphs and
pivot tables in particular may not work properly.

In order to use the spreadsheet to obtain results, what you
mainly need to do is copy-and-paste the raw results into the
tables. There are nine sheets in the document, three with raw
results (Circuit Weak, Stencil Weak, and Pennant Weak)
and six with derived data (pivot tables and graphs). You only
need to touch the tables with raw data.

A.8 Future-Proofing These Instructions
All supercomputers will eventually be decommissioned. If
you come to this paper after Piz Daint is unavailable, it may
require substantially more work to replicate.

For best results, we recommend picking a machine as sim-
ilar to the target platform as possible. Intel (or AMD) CPUs
(x86-64) and NVIDIA GPUs would be ideal. However, we
cannot guarantee that GPUs and versions of CUDA produced
after the publication of this paper will workwith the archived
version of Regent. Similarly, supercomputer interconnects
evolve over time and newer interconnects may not work
with the version of GASNet archived in the artifact. If you
encounter this situation, you may be able to make progress
by using an upstream version of Regent; however, that will
prevent you from evaluating any version of the algorithms
in this paper other than the latest (Ray Casting).
The scripts in the artifact assume that a Cray program-

ming environment is available. If this is not the case, then
the scripts may need to be modified to use conventional
compilers (e.g., GCC) instead.
If the target machine uses the SLURM job scheduler, the

run scripts may work with some modifications specific to the
site. One item to pay attention to is the number of GPUs per
node: if it is greater than one, then to make the configuration
as similar to Piz Daint as possible it will likely be best to run
with one rank per GPU (rather than one rank per node).

https://docs.google.com/spreadsheets/d/173C8yQMZALJqNXw4wJFJFy-RdTqLMNsW4fwPzfSYaMo
https://docs.google.com/spreadsheets/d/173C8yQMZALJqNXw4wJFJFy-RdTqLMNsW4fwPzfSYaMo
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